
Final Report: Intelligent Network-Centric Sensors 
Development Program 

University of Memphis 

Department of Electrical and Computer Engineering 

31 July 2012 

Principal Investigator: Dr. Eddie L. Jacobs 
Co-principal Investigators: Drs. David J. Russomanno ,Carl Haiford, and Aaron 

Robinson 

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is 
unlimited. 

aoU|ol£c?i7 



THE UNIVERSITY OF 

MEMPHIS. 

Defense Technical Information Center 
8725 John J. Kingman Road, Suite 0944 
Fort Belvoir, VA 22060-6218 

Department of Electrical and 
Computer Engineering 

206 Engineering Science Bldg 
Memphis, Tennessee 38152-3180 

Voice: 901.678.2175 
Fax: 901.678.5469 
eljacobs@memphis.edu 

To Whom It May Concern: 

Please find enclosed one copy of the final technical report for cooperative agreement 
number W911NF-10-2-0071, "Intelligent Network-Centric Sensor Systems". The report 
includes a detailed account of all major advances accomplished under this agreement 
along with copies of all published and un-published reports generated as a result of the 
effort. 

Sincerely, 

Eddie Jacobs, D.Sc. 
Director, Center for Advanced Sensors 

A Tennessee Board of Regents Institution 
An Equal Opportunity - Affirmative Action University 



1.0 Executive Summary 
The University of Memphis conducted basic research into techniques for advancing 
network-centric sensors for eventual deployment in Department of Defense (DoD) 
applications. This basic research included the following focus sub-areas: i) feature 
fusion/feature-based sensor system design techniques; ii) sensor ontologies for problem- 
solving architectures; iii) profiling sensor improvement through the use of innovative 
classification algorithms and data visualization techniques; iv) alternative sensing 
modalities; v) turbulence mitigation techniques; and vi) development of a feature sensing 
laboratory. 

Under the topic of feature fusion/feature-based sensor system design, techniques known 
as Lasso, Group Lasso, and Sparse Multiple Kernel Learning were applied to break beam 
profiling sensor design. The results indicate that the Group Lasso technique is effective 
for feature quality maximizing sensor design because of its ability to provide both inter- 
group and intra-group feature sparsity. 

Under the topic of sensor ontologies for problem-solving architectures, a framework that 
matches sensors to compatible algorithms to fonn synthesized systems was developed 
and applied to improved forms of the beam-break profiling sensor. This work resulted in 
several publications. 

Under the topic of profiling sensor improvement, various algorithms for improving the 
classification performance of a pyro-electric based profiling sensor were investigated and 
tested using data from field collections. Results indicated that Logistic regression with a 
simple height to width ratio provide good performance. 

Under the topic of alternative sensing modalities, a model for micro-resonator based 
sensors was developed, research toward the improvement and refinement of a novel 
technique for forming terahertz images was performed, and the use of compressive 
sensing in a profile type detector was investigated. This work resulted in several 
publications. 

Under the topic of turbulence mitigation techniques, lucky imaging, blind deconvolution, 
spectral techniques, and frame averaging were examined using turbulence simulation 
against their ability to perform in a wide variety of tactical situations. The strengths and 
weaknesses of each were discussed in a publication. In addition, the applicability of 
turbulence mitigation techniques to sparse array sensors such as profiling sensors was 
investigated. 

Under the topic of a feature sensing laboratory, the design and implementation of an 
infrastructure to support long-term sensor network emplacements in a laboratory like 
environment was pursued. To date, key features of the design have been implemented 
with final integration of the initial deployment likely to happen in September 2012. 



The execution of this contract has resulted in some significant scientific and technical 
progress in support of intelligent, network-centric, sensors. We believe that this work has 
been of immediate benefit to the Army and will continue to pay dividends in technical 
achievement into the near future. Further publications will result directly and indirectly 
from this work. 



2.0 Introduction 
The University of Memphis conducted basic research on the subject of Intelligent 
Network Sensors in support of US Army basic research needs in the areas of perimeter 
security and force protection. This research covered a broad range of research topics and 
has resulted in several conference and journal publications. 

The topics of research pursued under this effort were: i) feature fusion/feature-based 
sensor system design techniques; ii) sensor ontologies for problem-solving architectures; 
iii) profiling sensor improvement through the use of innovative classification algorithms 
and data visualization techniques; iv) alternative sensing modalities; v) turbulence 
mitigation techniques; and vi) development of a feature sensing laboratory. A detailed 
description of each research topic pursued in this effort is given below. Further details 
and copies of published papers may be found in the Appendices. 

3.0 Feature Fusion/Feature Based Sensor Design 

Task 3.1: Demonstrate sensor optimization based on enhancement of 
feature quality. 

Task 3.2: Develop a feature fusion quality metric to serve as a cost function 
for optimizing sensor design. 

To demonstrate the procedure to accomplish the above stated objectives, the design of a 
sparse trip wire sensor for human versus animal classification is used as a case study. The 
sensor consists of two poles that can be placed on either side of a bottleneck along a trail. 
One pole is lined with NIR transmitters and receivers, while the other pole is lined with 
reflectors. As an object passes between the two poles, it blocks the path between the 
trans-receiver (Tx-Rx) and reflector (Rr). The shape of the moving object is thus traced at 
the output of the sensor system The choice of number of sensors and their positions on 
the poles are important design parameters. This effort investigates techniques to optimize 
these parameters with the objective of enhancing the quality of shape features that 
distinguish humans from animals. Each Tx-Rx and Rr pair generates '0' based on the 
amount of time they have been blocked by the moving object. The count of the number of 
'0's generated by a pair can be used one feature. The sensor system used in this research 
has 16 such pairs, generating 16 features for each object (hence forth a Tx-Rx and Rr pair 
will be referred to as a detector in this report). This means a feature fusion technique that 
assigns weights to features based on their importance also assigns weights to the 
corresponding detector. This means that a detector with negligible weights can be 
removed from the sensor during subsequent design iterations. Three feature fusion 
techniques, namely Lasso [Tibshiranil996], Group Lasso[Friedman2010] and Sparse 



Multiple Kernel Learning[Subramanhya2010] are investigated for feature quality based 
sensor design. 

Sparse Multiple Kernel Learning (SMKL) 

In many cases, two classes, not separable linearly in their native dimensions, can be made 
linearly separable in higher dimensions. In algorithms such as Support Vector Machines 
(SVM), the inner product operation on the data is an important step. This process 
becomes computationally challenging in higher dimensions. The Kernel trick allows the 
dot product to be implemented in the lower dimensions itself, but gives the effect of a dot 
product in the higher dimension. Let (p{x) represent the mapping or projection of x on to 

a higher dimension. The Kernel trick allows for the inner product (<p(x)(p(x')} in the 

higher dimensional feature space to be represented by a Kernel in the input (low 
dimension) space K(x,x') .  For example the radial basis function Kernel given by 

(   n .11= ^1 
corresponds to an inner product in an infinite dimensional K(x,x') = exp 

space. 

2cT 

SMKL is anon-linear group selection technique that weights groups of features. In the 
context of this report, the technique assigns weights to groups of detectors. SMKL 
consists of a composite K(x,x') kernel generated by the weighted sum of primitive kernels 
k{x,x')- 

K(x,x') = ^ßgk(x,x') 

where G is the total number of group and ßg are the kernel weights. If different groups of 
features are assignment to different kernels then the kernel weights become weights for 
the groups. The process of estimation of the weights follows the technique described in 
[ S ubramanhy a2010] 

Lasso 

Least Absolute Selection and Shrinkage Operator, known more by its acronym Lasso is a 
linear technique for solving a sparse regression problem. Lasso minimizes objective 

function \Xß - y\\2 + A||/?||j to find the optimum weighting parameters ß for the features X 

given the corresponding class predictions y. X is the regularization parameter that can be 
varied to change the sparsity of the solution. 

Group Lasso 



Group Lasso as proposed by Friedman et al. is regression technique that introduces 
sparsity at both the group level and at the individual feature level. The sparsity is 
achieved by minimizing the cost function given by: 

y-IxA + 4itoi +m 

G is the number of groups, Ng is the number of features in the gth group, Xg corresponds 

to the features of the gth group,/? = [ßiß2--ßG]  ^ ßg = ßß2...ßN J . The process of 

solving the optimization problem is described in [Friedman2010] The second term in the 
cost function can cause very few weights in ßo to be non-zero introducing sparsity within 
a group. A combination of the second and third term in the cost function can cause all the 
weight in a particular ßa to be set to zero. This results in discarding an entire group, 
leading to sparsity at the group level. In summary, Group Lasso provides both inter-group 
and intra-group sparsity. It should be noted that the SMKL technique only provides group 
level sparsity and not intra-group sparsity. 

Results 

The algorithms were applied to a version of the trip 
wire sensor, which has 16 detectors. In the case of 
Group Lasso, three groups were formed with 
detectors 1 through 5 forming group 1, detectors 6 
to 11 forming group 2 and detectors 12 through 16 
forming group 3. A total of 135 human profiles and 
96 animal profiles collected through various data 
collections were used for the analysis. Figure 3.1. Weights assigned to 

detectors through Lasso 

The graphs shown in Figures 3.1 and 3.2 show the weights assigned to detectors of the 
trip wire sensor using Lasso and Group Lasso respectively. 

The results indicate Lasso and Group Lasso assigns 
non-zero weights to only 7 out of the total of 16 
detectors. In this particular case, it can be 
hypothesized that Group Lasso does not provide 
group level sparsity since at least one detector in 
each group is essential to minimizing the first term 
in the cost function. SMKL provides weights of 
0.3804, 0.305 and 0.3.144 respectively for groups 1, 
2 and 3. This confirms with the results of Lasso and 
Group Lasso, since every group has detectors that 
contribute toward minimizing the error. 
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Figure 3.2. Weights assigned 
detectors using group Lasso 

to 



The investigation indicates that the Group Lasso technique is an effective for feature 
quality maximizing sensor design because of its ability to provide both inter-group and 
intra-group feature sparsity. Future effort will entail research into mutli-modal sensor 
network design using the techniques described above. 

References 
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4.0 Sensor Ontologies 

Task 4.1: Conduct basic research to a) advance sensor ontologies for 
problem-solving architecture; and b) advance profiling sensors through the 
use of innovative classification algorithms and data-visualization 
techniques 

The deployment of ubiquitous sensor systems and algorithms has led to many challenges, 
such as matching sensor systems to compatible algorithms which are capable of 
satisfying a task. Compounding the challenges is the lack of the requisite knowledge 
models needed to discover sensors and algorithms and to subsequently integrate their 
capabilities to satisfy a specific task. Basic principles for an ontological problem-solving 
framework have been researched and a proof-of-concept framework was implemented in 
support of Task 4.1. 

The proof-of-concept framework matches sensors to compatible algorithms to form 
synthesized systems, which are capable of satisfying a task and then assigning the 
synthesized systems to high-level missions. The approach designed for the ontological 
problem-solving framework has been instantiated in the context of a persistence 
surveillance prototype environment, which includes profiling sensor systems and 
algorithms to demonstrate proof-of-concept principles. Even though the problem-solving 
approach was instantiated with profiling sensor systems and algorithms, the ontological 
framework may be useful with other heterogeneous sensing-system environments. Work 
in support of Task 4.1 was published in J. Quails and D.J. Russomanno (2011) 
"Ontological Problem-Solving Framework for Dynamically Configuring Sensor Systems 



and Algorithms," Sensors, Volume 11, Number 3, 3177-3204. This paper is provided as a 
supplement to this report. 

The work of the previous paragraph was extended, also in support of Task 4.1. This work 
leverages knowledge models describing sensors, algorithms, and high-level missions to 
facilitate automated inference of assigning systems to subtasks that may satisfy a given 
mission specification. To demonstrate the efficacy of the ontological problem-solving 
architecture, a family of persistence surveillance sensor systems and algorithms has been 
instantiated in a prototype environment to demonstrate the assignment of systems to 
subtasks of high-level missions. This work extends the results of the previously cited 
journal paper and was published as J. Quails and DJ. Russomanno (2011) "Ontological 
Problem-Solving Framework for Assigning Sensor Systems and Algorithms to High- 
Level Missions" Sensors, Volume 11, Number 9, 8370-8394. This paper is provided as a 
supplement to this report. 

To advance profiling sensors through the use of innovative data-visualization techniques 
work was completed in support of Task 4.1 to port existing data visualization software 
for creating silhouettes from data obtained from the vertical array detector version of a 
profiling sensor to a platform-independent architecture. The silhouette viewer was 
subsequently integrated into the ontology problem-solving framework where it can be 
described using the web ontology language (OWL) and subsequently discovered and 
tasked. The integration of the silhouette viewer into the ontology-based framework is 
described in the context of data fusion in the paper C. Kothari, J. Quails and D.J. 
Russomanno (2012) "An Ontology-Based Data Fusion Framework for Profiling 
Sensors," IEEE International Conference on Electro/Information Technology, IEEE 
Press, Indianapolis, Indiana. The research in this paper was also in direct support of Task 
1 and is provided as a supplement to this report. 

Additional work was completed in support of Task 4.1 in classification algorithm 
development. A back-propagation neural network was created to classify data from a 
novel, wireless profiling sensor developed in support of Task 4.3. The wireless version of 
the profiling sensor allows the detectors to be placed in custom configurations, versus the 
traditional vertical detector array. The results of the classification algorithm were 
published in the paper: A. Galvis, D.J. Russomanno and C. Kothari (2012) "A Wireless 
Near-IR Retro-Reflective Profiling Sensor," Proceedings SPIE: Ground/Air Multi-Sensor 
Interoperability, Integration and Networking for Persistent ISR 111, Volume 8389, 
Baltimore, Maryland. This paper is also provided as a supplement to this report. 

Task 4.2: Conduct research to help define a means by which sensor 
specifications, capabilities, and properties can be published and 
discovered in a computer-readable format 

The ontology work described in support of Task 4.1 also directly supports Task 4.2 by 
using ontologies to define and make available in a computer-readable fonnat sensor 
specifications, capabilities, and properties. In addition to the two Sensors journal papers 



previously listed, additional research was conducted in support of Task 2 to provide a 
proof-of-concept illustration about how sensor specifications, capabilities, and properties 
can be published in an ontology and used to support ontology-based fusion. The paper 
published as C. Kothari, J. Quails and DJ. Russomanno (2012) "An Ontology-Based 
Data Fusion Framework for Profiling Sensors," IEEE International Conference on 
Electro/Information Technology, IEEE Press, Indianapolis, Indiana, which was first cited 
above in support of the visualization subtasks of Task 4.1, describes the details of this 
work in support of Task 4.2. 

Additional activity and accomplishments in support of Task 4.2 include a concept paper 
researching the role of an ontology to support data-to-decision sensing enviromnents that 
assess human intent from external stimuli. The paper published as C. Kothari, D.J. 
Russomanno, R.B. Sartain and R. Frankel (2012) "Toward Data-to-Decision Sensing 
Environments to Assess Human Intent from Responses to Stimuli," Proceedings SPIE: 
Ground/Air Multi-Sensor Interoperability, Integration and Networking for Persistent ISR 
III, Volume 8389, Baltimore, Maryland, is also provided as a supplement to this report. 



Task 4.3: Assess research theories and concepts through the construction 
of laboratory sensors, algorithm development and implementation, 
implementation of novel visualization software, and hardware and software 
architectural considerations that could ultimately be integrated into 
network-centric architecture 

Profiling sensors were advanced in support of Task 4.3 through the construction of novel 
laboratory sensors, algorithms, and visualization tools. Three laboratory profiling sensors 
were created in support of Task 4.3, including a traditional vertical array (and wired) 
profiling sensor, a wired profiling sensor with offset detectors, and a novel, wireless 
profiling sensor in which each detector comprises a node in a wireless sensor network. 
The wireless sensor network approach allows the detectors of a profiling sensor to be 
deployed in custom configurations. Software to classify and visualize data acquired from 
the novel, wireless profiling sensor was also developed in support of Task 4.3. 

The notion of a profiling sensor was first implemented as a near-IR, retro-reflective 
prototype consisting of a vertical column of sparse detectors by a team led by Dr. 
Russomanno at the U. of Memphis in support of cooperative agreement W911NF-05-2- 
0019 between the University of Memphis and the U.S. Army's Research Laboratory 
(ARL). Alternative arrangements of detectors were researched and implemented in 
support of Task 4.3 in which a subset of the detectors were offset from the vertical 
column and placed at arbitrary locations along the anticipated path of the objects of 
interest. The paper published by R.K. Reynolds, S. Chari and D.J. Russomanno (2011) 
"Embedded Real-Time Classifier for Profiling Sensors and Custom Detector 
Configuration," Proceedings SPIE: Ground/Air Multi-Sensor Interoperability, 
Integration and Networking for Persistent ISR, Volume 8047, Orlando, Florida, pp. 
80470E-1-80470E-9, is also provided as a supplement to this report and describes 
accomplishments in support of Task 4.3. 

All prior work with the near-IR, retro-reflective profiling sensors has consisted of wired 
detectors, including the work cited in the previous paragraph. Research was conducted in 
support of Task 4.3 to advance this prior work by designing and implementing a wireless 
prototype version of a near-IR retro-reflective profiling sensor in which each detector is 
a wireless sensor node. In this architecture, a base station is responsible for collecting all 
data from the detector sensor nodes and coordinating all pre-processing of data collected 
from the sensor nodes, including data re-alignment, before subsequent classification 
algorithms are executed. Such a wireless detector configuration advances deployment 
options for near-IR, retro-reflective profiling sensors. This work, which was in support of 
Task 4.3, is detailed in the paper: A. Galvis, D.J. Russomanno and C. Kothari (2012) "A 
Wireless Near-IR Retro-Reflective Profiling Sensor," Proceedings SPJE: Ground/Air 
Multi-Sensor Interoperability, Integration and Networking for Persistent ISR III, Volume 
8389, Baltimore, Maryland. This paper is also provided as a supplement to this report. 



Task 4.4: Undertake field data collection with profiling sensors and 
emulators to build an extensive signature library to support algorithm 
development 

In support of Task 4.4, field data collections were limited to expanding the profiling 
sensor library with data captured from the new profiling sensors that were developed in 
support of Task 4.3. The data was used to support the classification algorithm and 
visualization algorithm development referenced in support of Tasks 4.1 through 4.3. 
Additional field data collections would improve the robustness of the various classifiers. 

Papers Published in Support of Project (Copies provided in 
Appendix X) 
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2. J. Quails and DJ. Russomanno (2011) "Ontological Problem-Solving Framework 
for Dynamically Configuring Sensor Systems and Algorithms," Sensors, Volume 
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3. J. Quails and DJ. Russomanno (2011) "Ontological Problem-Solving Framework 
for Assigning Sensor Systems and Algorithms to High-Level Missions" Sensors, 
Volume 11, Number 9, 8370-8394. 

4. A. Galvis, DJ. Russomanno and C Kothari (2012) "A Wireless Near-IR Retro- 
Reflective Profiling Sensor," Proceedings SPIE: Ground/Air Multi-Sensor 
Interoperability, Integration and Networking for Persistent ISR III, Volume 8389, 
Baltimore, Maryland. 

5. C. Kothari, J. Quails and DJ. Russomanno (2012) "An Ontology-Based Data 
Fusion Framework for Profiling Sensors," IEEE International Conference on 
Electro/Information Technology, IEEE Press, Indianapolis, Indiana. 

6. C. Kothari, DJ. Russomanno, RB. Sartain and R Frankel (2012) "Toward Data- 
to-Decision Sensing Environments to Assess Human Intent from Responses to 
Stimuli," Proceedings SPIE: Ground/Air Multi-Sensor Interoperability, 
Integration and Networking for Persistent ISR III, Volume 8389, Baltimore, 
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5.0 Profiling Sensors: classifiers, visualization 
techniques, and network-centric integration 

Background 

Conventional   electro-optical   systems   have   been   used   extensively   in   Intelligence 
Surveillance and Reconnaissance (ISR) applications. These systems have typically been 



based on using two dimensional focal plane arrays. The disadvantage of such systems for 
applications of interest, namely deployment in inaccessible terrains for border security, is 
power consumption and cost. If the discrimination task is narrowed down to specific 
classes such as distinguishing between humans, animals and vehicles at ranges not 
exceeding few tens of meters, high resolution, high bit depth imaging systems may not be 
required. This scenario is true especially in the terrains in which objects can only travel 
through specific routes consisting of narrow trails. In this research, object recognition 
algorithms are developed for a pyroelectric detector based linear array to classify humans 
and animals. Initial testing on a smaller set of data point showed promising results 
[White2010] . The current report presents findings based on a more extensive data 
collection effort and new algorithmic approaches. 

Sensor Description 

A schematic of the pyroelectric linear array (PLA) sensor is shown in Figure 5.1 and a 
photo of the sensor package is shown in Figure 5.2. The PLA sensor uses a Dias 128 
element linear array of pyroelectric detectors along with a F/0.86 germanium lens. The 
size of each detector is 90um x lOOum with a pitch of lOum. With a focal length of 50 
mm, the detector instantaneous FOV (IFOV) is 1.8mrads x 2mrads. The extent of the 
spatial sample at range of 30 meters is 5.4cm x 6cm, providing about 17 samples over the 
height of a 2m tall human. A 18F4550 pic microcontroller is used for A/D conversion and 
communication. The sensor system operates at a sampling rate of 20Hz. 

A' 
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Figure 5.1. Schematic of PLA sensor. 

Figure 5.2. Photo of PLA sensor 

Data collection effort 



Data collection using the PLA sensor was performed in two geographically distinct 
locations. One location was near the US-Mexico border which is typically has an arid 
terrain with thorn bushes forming significant portions of the vegetation. The other 
location was at a petting zoo near Memphis, Tennessee where the terrain was covered 
with grass and trees. The human category was represented by males and females of with 
varying physical built. Large, medium and small horses, cows, lamas, donkeys and dogs 
formed the animal class. The humans and animals moved in the field of view of the 
system at various speeds at ranges varying from 10 meters to 20 meters. Animals had 
handlers directing their movements during the data collection. Figure 5.3 shows the 
output of the PLA sensor with three horses, Figure 5.4 shows six humans and Figure 5.5 
shows a human followed by a miniature cow. 

■■■■■■■ 

Figure 1.3. Image of three horses generated by the PLA sensor 

Figure 5.4. Image of six humans generated by PLA sensor 
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Figure 5.5. Image of a human followed by a miniature cow generated by PLA sensor 



Object Recognition algorithms 

A statistical threshold was estimated for each detector output for segmenting the targets 
from background. The AC couple nature of the pyroelectric detector suppresses static 
objects in the background and only responds to the moving targets. If a target does not 
show variations in sections of its body, then the detectors do not respond. This can lead to 
fragmentation of an object. When a hot object enters and leaves the FOV of the sensor, 
the step response properties of the pyroelectric detector generate large output up swings 
and down swings at the instants of entry and exit of the object respectively. Fragmented 
objects can be regrouped by tracking these bipolar swings. The statistical threshold used 
for segmentation was also used to binarize objects with object set to 1 and background set 
to 0 for extracting geometrical features such as height to width. On the other hand, the 
segmented objects were retained in gray scale form for extracting texture based features 
using Log-Gabor filter bank. These features are then classified using one of three 
different classification algorithms, namely Mahalanobis distance classifier, Gaussian 
mixture classifier and Logistic Regression. 

Results 

A total of 315 human profiles and 182 animal signatures were collected using the 
pyroelectric sensor at two locations at the US Mexico border in Arizona (ArzData) and at 
a petting zoo near Memphis (PzData). The number of samples of at each location for the 
three data collection sites is shown in Table 5.1. The data was separated into testing and 
training data using in two ways as shown in Table 5.2. The training and testing choices 
described in Table 5.2 were made because PzData has too few samples to form a training 
set in itself. On the other hand, including PzData in the test set increased the variance of 
the test set, making the test robust. This is because the animal samples in ArzData were 
horses but the petting zoo data, apart from horses, also contained cows, lamas, donkeys. 

Table 5.1: Number of data points collected using PLA sensor 

ArzData location 1 ArzData location 2 PzData 

human signatures 140 145 41 

animal signatures 73 84 41 

Table 5.2: Training and testing data 

Data set Training data Test data 

1 ArzData location 1 ArzData    location 
PzData 

2 + 

2 ArzData location 2 ArzData     location 1 + 



PzData 

Classification rates are shown in Tables 5.3 and 5.4. It is observed that Logistic 
regression using height and width features achieves the highest classification rate of over 
89% for data set 1 and classification rate of over 90% classification rate for data set 2. 
The GMM classifier using height to width ratio also performs well coming with 
classification rates over 85% in both cases. The main cause of error was the incorrect 
grouping of fragments of objects during the object detection phase. Another cause of 
error was animals running at high speeds. The profile height and width feature of a 
galloping horse is similar to that of a tall human walking slowly. The Gabor features 
perfomied poorly and using dimensionality reduction techniques such as linear 
discriminant analysis only provided marginal improvement in the classification accuracy. 
Though results of the classification rates are not reported here for wavelet packet based 
features, their classification performance was significantly lower. 

Table 5.3. Classification rates for data set 1 

Feature extraction Classifier Classification rate 

Gabor features Mahalanobis distance 75.3% 

Height and width Logistic Regression 89.6% 

Height to width ratio GMM 85.7% 

Table 5.4. Classification rates for data set 2 

Feature extraction Classifier Classification rate 

Gabor features Mahalanobis distance 73.6% 

Height and width Logistic Regression 90.8 % 

Height to width ratio GMM 86.4% 

Future Work 

The results from this research effort will be submitted to the IEEE Sensors Journal in 
August 2011. 

Several tasks are foreseen in future efforts to further refine and improve the sensor 
system. The first one includes implementing the software on low resource computing 
platforms for real time performance. The second task is incorporating this system into a 
multi-modal sensor network. It is hypothesized that fusion of features from the PLA 
sensor with sensors such as acoustic and seismic sensors will further increase the 
discrimination rates. Another goal is to overcome misclassification of galloping animals 
as humans. For this a two columns array is currently being developed. The time of 



appearance of an object in each of the columns can be used to estimate speed of objects, 
which can be used to address the above-mentioned errors. Further, a more sensitive 
detector array is being used for the development of a long range PLA with ability to 
discriminate well beyond the 30-meter range limit of the current PLA system. This long 
range PLA system will provide greater sensor to object standoff distance and thus 
expanding the utility of the sensor beyond trail monitoring into other tactical and military 
applications. The higher sensitivity detector system can reduce the fragmentation effect at 
the sensor output that has also been a source of classification errors. 

Papers Published in Support of Project (Copies provided in 
Appendix X) 

[White2010] W. E. White III, J. B. Brown, S. Chari, and E. L. Jacobs, "Real-time 
assessment of a linear pyroelectric sensor array for object classication," D. A. Huckridge 
and R. R. Ebert, Eds., vol. 7834, no. 1. SPIE, 2010, p.783403. [Online]. Available: 
http://link.aip.Org/link/7PSI/7834/783403/l 

6.0 Alternative Sensing Modalities 

Task 6.1: Develop alternate modalities of operation for beam break profiling 
sensors. 

An alternative to beam-break sensors for border and perimeter security is the use of 
micro-mechanical resonators. These types of sensors could be used to produce seismic or 
acoustic versions of profiling sensors. A detailed analysis of this mode of sensing was 
conducted and is presented in Appendix X. 

Task 6.2: Map the feature space of an "atomic" sensor and relate the 
features to profile classification performance. 

Sensor atoms are fundamental units of sensing. This concept was explored as part of the 
overall effort of this contract. Some basic properties of a particular type of sensor atom, 
the Bernoulli sensor atom, were derived. A brief paper (unpublished) on the concept of 
sensor atoms and the Bernoulli sensor atom was produced and is provided in Appendix 
X. Publication of this work will require implementation and refinement of the concept of 
atoms in groups, which is an ongoing area of research. 



Task 6.3: Further research into a University of Memphis concept for 
terahertz and sub-millimeter wave imaging for concealed 
weapons/contraband detection. 

Task 6.4: Investigate the use of compressive sensing techniques in 
improving profile classification. 

THz/sub-millimeter wave sensing provides a "see through" capability without the use of 
ionizing radiation. This capability is important in many types of security problems where 
the potential threat posed by an individual must be assessed prior to entry into a secured 
area. Sensors of this type have been under development for some time and low cost 
solutions remain elusive. Several sub-millimeter wave active and passive imaging 
systems for detection of hidden threats have been demonstrated but they all suffer from 
the low frame rate (i.e. active imagers) or high size and power consumption associated 
with cooled detection (i.e. passive imagers). Our effort is focused toward a solution to 
these problems using image plane coded aperture imaging techniques in active 
configurations with single pixel detectors. Different aspects of the work have been 
published in peer reviewed conferences and journals. Invited talks on this approach have 
been presented at IEEE and OSA conferences. 

At the beginning of the effort sub-millimeter wave imaging using a single pixel detector 
and an image plane coded aperture had been demonstrated by our group. The image plane 
coded aperture was implemented using a spinning disk with holes separated in a pseudo- 
random fashion on a perimeter line. The proof of concept device could reconstruct line 
images of a masked source placed ten meters away from the aperture of a reflective optic. 
These simple images consisted of two point sources. The work was published in the 
paper 0. Furxhi and E. L. Jacobs (2010) "A Sub-Millimeter Wave Line Imaging Device," 
Proceedings of SPIE, Volume 7670, Orlando, Florida, USA. This paper is provided as a 
supplement to this report. 

In continuation of the effort described in the previous paragraph, a scanning line imager 
was built and imaging of an extended metallic object was demonstrated. Each line of the 
image was acquired in 300ms as the target was scanned across the field of view. The 
images were reconstructed offline using linear measurement techniques. The linear 
measurement techniques are computationally efficient and the image reconstruction 
reduces to a simple matrix vector multiplications. This work was published in the paper 
O. Furxhi and E. L. Jacobs (2010) "A sub-millimeter wave line scanning imager," 
Proceedings of SPIE, Volume 7837, Toulouse, France. This paper is provided as a 
supplement to this report. 

The image plane coded aperture used in the previous work is suitable for building a 
compressive sensing (CS) imager. CS imagers make linear measurements on the image of 
the scene. The number of measurements is usually smaller than the desired number of 
pixels in the image and therefore the image reconstruction is. realized using non-linear 
iterative algorithms. We used the CS algorithms on measurements collected with the 
image plane coded aperture line imager and were able to reconstruct line images with half 
the number of measurements used with linear measurement techniques. The line imager 
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configuration of this sensor is in essence a THz profiling sensor. This work was 
summarized in the paper Imama Noor, Orges Furxhi and Eddie L. Jacobs (2011) 
"Compressive sensing for a sub-millimeter-wave single pixel imager", Proceedings of 
SPIE, Volume 8022, Orlando, Florida, USA. This paper is provided as a supplement to 
this report. 

In continuation of the effort, a two-dimensional version of the image plane coded 
aperture imager was built and demonstrated. The image plane coded aperture was 
implemented using a spinning disk with holes placed pseudo randomly across the surface 
of the disk. A square aperture was placed in front of the disk to indicate an image 
window. This device could scan a two-dimensional image of the scene every 20ms 
(50Hz). The images that were reconstructed consisted of 64x64 pixels and were 
reconstructed in real time as the data was collected. Initially the two-dimensional coded 
aperture was used to fonn images at visible light wave lengths. For this purpose an re- 
type silicon PIN photodetector was used instead of the sub-millimeter wave detector. And 
a collimated red laser was used as an illumination source instead of the sub-millimeter 
wave source. The reason for visible light implementation was two-fold. First, it helped 
with the debugging of the issues related to the spinning disk coded aperture (elimination 
issues with the sub-millimeter wave optics) and second, it demonstrated the wavelength 
independence of the spinning disk coded aperture. This work was published in the paper 
0. Furxhi and E. Jacobs, "Spatially Selective Mask for Single Pixel Video Rate 
Imaging," in Imaging Systems and Applications, OSA Technical Digest (CD) (Optical 
Society of America, 2011), paper ITuA3, in Toronto, Ontario, Canada. This paper is 
provided as a supplement to this report. 

The spinning disk coded aperture device was then used to implement a two-dimensional, 
real-time, sub-millimeter wave imager. This device could scan a two-dimensional 
reflection mode image of a metallic target positioned 10 meters away, every 20ms 
(50Hz). The target was illuminated with sub-millimeter waves and its reflection was 
imaged on the coded aperture. The images that were reconstructed consisted of 64x64 
pixels and were reconstructed in real time as the data was collected. Imaging was also 
demonstrated in transmission mode (imaging the transmission of a sample/target). This 
work was published in Orges Furxhi, Eddie L. Jacobs and Robert Hewitt (2011), "Two- 
dimensional, real-time, sub-millimeter-wave imaging using a spatially selective mask", 
Proceedings of SPIE, Volume 8022, Orlando, Florida, USA. This paper is provided as a 
supplement to this report. 

An analysis comparing various modes of active imaging in terms of signal to noise ratio 
(SNR), including the image plane coded aperture approach, was conducted. The purpose 
of the analysis was the identification of advantages and disadvantages of the image plane 
coded aperture approach compared to more traditional ways of forming images in active 
configurations. The analysis concluded that the measurement SNR performance of the 
image plane coded aperture approach rests between the conjugate point imager 
configurations (best SNR) and focal plane array configurations (worst SNR) provided 
equal illumination power. The SNR approached the best SNR case when compressive 
sensing reconstruction techniques could be realized. However, the image SNR for the 



coded aperture approach is also related to the reconstruction method. The analysis 
identified the need for further analysis with regards to methods for the generation of hole 
patterns on the spinning disk that lead to independent codes (independent codes lead to 
better reconstructions). Another approach that could be pursued is the identification of 
other implementation of the coded aperture different from the spinning disk. This work 
was published in Orges Furxhi and Eddie L. Jacobs (2011), "Comparison of schemes for 
active sub-millimeter wave imaging", Proceedings of SPIE, Volume 8188, Prague, Czech 
Republic. This paper is provided as a supplement to this report. 

Further analysis concerning the image reconstruction technique that is utilized by the two 
dimensional sub-millimeter wave imager was conducted and a journal paper was 
published in the Journal of Optical Engineering summarizing the imager and the 
mathematical. analysis associated with the reconstruction techniques. The publication 
Orges Furxhi, Eddie L. Jacobs and Chrysanthe Preza, "Image plane coded aperture for 
terahertz imaging", Opt. Eng. 51, 091612 (Jun 15, 2012), is provided as a supplement to 
this report. 

Other approaches of implementing an image plane coded aperture imager were 
investigated and an effort was put forward to formalize the concept of image plane coded 
aperture (IPCA) detectors. IPCA detectors are used as substitutes for focal plane arrays in 
frequency regimes where focal plane arrays are impractical, expensive, or non-existent. 
IPCA detectors are composed of a single element detector sensitive to the radiation 
frequency of interest, a reconfigurable spatial light modulator (SLM), and a mechanism 
such as a lens or a horn that is used to collect the radiation past the SLM and focus it on 
the sensing element. The IPCA detector is placed in the image plane of an imager and is 
used to make linear measurements on the image by modulating the information on the 
image plane spatially and/or temporally in amplitude, frequency, phase, or polarization. 
The image is then reconstructed computationally using inverse imaging techniques. In 
this work the spinning disk IPCA detector for sub-millimeter waves was used to illustrate 
the concept. Also, an IPCA detector with a phase modulating SLM was proposed as an 
alternative. This work was published in O. Furxhi, E. L. Jacobs (2012), "Image Plane 
Coded Aperture Detectors for THz Imaging" 2012 IEEE MTT-S International 
Microwave Symposium Digest, Montreal, Quebec, Canada. This paper is provided as a 
supplement to this report. 

Another effort was also put forward to further understand and model the behavior of the 
spinning disk IPCA with respect to the codes that it generates. The generation of a 
procedure for producing hole patterns that lead to independent codes are of interest as 
independent codes improve the image quality. Initial work in this regard was published in 
E. Jacobs and O. Furxhi, "Image Plane Coding for Terahertz Imaging," in Optical 
Sensors, OSA Technical Digest (online) (Optical Society of America, 2012), paper 
SW3C.3, Monterey, CA, USA. This paper is provided as a supplement to this report. 

In summary, the research effort has advanced the terahertz/sub-millimeter wave imaging 
device from a line imager with offline image reconstructions to a two-dimensional, real- 
time imager with 50Hz image scan rates and real-time reconstructions. The effort has also 



generated further analysis on this imaging approach and has identified aspects of the 
approach that need improvement. 

Papers Published in Support of Project (Copies provided in 
Appendix X) 
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7.0 Turbulence Mitigation 

Task 7.1: Investigate the functional applicability and limitations of current 
turbulence mitigation techniques and algorithms. 
In support of Task 7.1 a thorough review of the most common mitigation techniques was 
completed, their respective algorithms implemented, and the results compared. The 
comparison resulted in the discovery of a number of advantages and disadvantages 
related to the implementation of each. They may be summarized as follows. 
Lucky/synthetic imaging is based on the finite probability that an uncorrupted frame and 
will eventually propagate through the turbulent atmosphere. It has of the advantage of 
automatically handling isoplanatic restriction that plagues most of the other turbulent 
mitigation techniques and enables diffraction limited imaging. The disadvantages of the 
algorithm lie in that it depends on short exposure imagery, calculation of image quality 
metrics, and dependence on a mosaic procedure for best results even though isoplanatism 
is handled inherently in the algorithm. Blind deconvolution has the advantage that it can 
be implemented for correction of a wide variety of turbulent atmospheres even when little 
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detail of the intervening atmosphere is provided. The disadvantages include the enormous 
computational complexity, no guarantee of convergence to the optimal solution, and 
dependence on isoplanatic patch size. Higher order spectral techniques have the 
advantage of being spectrally intuitive, resistant to corruption from white Gaussian noise, 
capable of identifying nonlinear relationships between phase components and therefore 
enabling a better representation of the degraded object. The drawbacks to its 
implementation are the significant data storage requirement, trial and error determination 
of the intervening aünosphere's spectral amplitude, the dependence on isoplanatic patch 
size, and the inherent fundamental frequency linear phase corruption. Finally, frame 
averaging was the final mitigation technique investigated. It has the advantage of being 
simple, computationally efficient, and effective in the removal of the jitter associated 
with a turbulent atmosphere. The drawbacks to its implementation are that it effectively 
prevents diffraction limited imaging and is not suitable for targets traveling with 
considerable speed. These results appear as an unpublished paper and further details 
related to the implementation can be found in Appendix X. 

Task 7.2: Examine the turbulent effects as a function of range, atmospheric 
effects, imaging band, optical design, and detector type. 
In support of Task 7.2, an efficient turbulence simulation algorithm was developed to 
reproduce the turbulent atmosphere effects on a pristine image or video of an applicable 
target. The algorithm is based on visible wavelength statistics captured from various 
turbulent atmospheres. This effort extended those results to include infrared wavelengths. 
Additionally, the simulation tool allows the user to input range, strength of turbulence, 
imaging band, short or long exposure detector integration times, and other optical design 
characteristics. The result is a simulated image or image sequence representing the effects 
of the atmosphere, the optics, and the detector. The degraded imagery is suitable for most 
types of turbulence mitigation algorithm development. It should be noted that the 
simulation algorithm has not undergone strenuous comparison to real collected data. That 
effort is currently underway. The details of the implementation and the result results from 
this effort have been published and can be found in Appendix X. 

Task 7.3: Explore the effects of turbulence on hyper-spectral data, fusion 
and metric development and the effects of mitigation on feature 
discrimination. 

The following efforts were undertaken to determine the effects of turbulence on feature 
extraction techniques applied to a sparse detector sensor arrays. Video data of humans 
and animals was captured using a long wave infrared imaging sensor array. That data was 
subsequently processed to extract profile data, determine applicable height to width 
ratios, and classified based on the extracted features. The turbulence simulation algorithm 
developed in support of Task 7.2 was then used to corrupt the same imagery. The height 
to width ratio of the resultant imagery was examined to determine the quantitative 
differences when compared to the uncorrupted sequences. The results show that for 
coarse-grained classifications such as human versus animal determination, even the 
strongest levels of turbulence only minimally affect the height to width ratios. Thus, we 



can conclude that for human versus animal classification, turbulence should not be much 
of an issue. However, as noted above, the turbulence simulation algorithm is not 
undergone strenuous data verification and thus the application of these results should be 
limited until such time that verification has been completed. These results appear as an 
unpublished paper and further details related to the implementation can be found in 
Appendix X. 

Task 7.4: Consider the effects of the extension of current turbulence 
mitigation techniques to sparse detector sensor arrays. 
The efforts in support of Task 7.4 include the consideration of current turbulence 
mitigation techniques and their application to the profile extraction system. 
Implementation of a turbulence mitigation algorithm cannot be considered apart from the 
processing platform. Therefore, the recommendations derived under this section reflect 
the fact that a low power sparse detector array makes up our sensing platform. Given 
these constraints lucky/synthetic imaging and single frame or multi-frame de-convolution 
cannot be considered due to their dependence on short exposure imaging and high 
computational complexity. Higher order spectral techniques must also be excluded due to 
the large amount of data storage require for their implementation and their heavy 
computational complexity as well. Therefore we are left with only frame averaging as 
applicable mitigation technique for the sensing platform. Frame averaging represents a 
simple and straightforward method of improving the captured imagery for human 
consumption and can be implemented quite easily on most low power platforms. 

Papers Published in Support of Project (Copies provided in 
Appendix X) 
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8.0 Feature Sensing Laboratory 
Task 8.1: Characterize the existing campus sensor system including a 
formal knowledge model captured in an ontology. This will involve learning 
what is currently present on campus with regard to sensing systems, 
instrumenting them so that they produce data instead of just pictures, and 
establish a means for archiving this data. 

Task 8.2: Supplementing the existing campus sensor system. These 
sensors will either be sensors operating in non-visible wavebands or 
sensors designed to provide new sensing capabilities such as profiling 
sensors. 

Task 8.3: Experiment design. We will design multi-use experiments in 
which scenarios are created to stimulate events of interest. 

An important question in the development of unmanned ground sensors (UGS) is what 
the field performance will be long term and under different environmental conditions. It 
would be desirable to have a long-term emplacement of sensors that could be monitored 
24/7 in order to gain data on real world performance of these systems. As part of an 
Army sponsored program on Intelligent Network- 
Centric Sensors, we have begun building an UGS field 
test laboratory. When fully built, studies as outlined in 
the tasks above could be carried out. 

Although initially planned as an on-campus facility, it 
was decided, in consultation with the government 
technical POC, to implement this laboratory in an 
environment more typical for border and perimeter 
security applications. The site we have chosen is a 
biological field station owned by the University. The 
site chosen is the University of Memphis Meeman 
Biological Field Station. The site covers 623 acres and 
is located approximately twenty five miles northwest 
fonn the main university campus. The University of 
Memphis operates an earthquake monitoring station 
which includes a microwave link back to the campus 
(see Figure 8.1). 

Our design allows the status and information collected 
by sensors to be reviewed at the monitoring station in 
near real time. The data collected is moved through 
routing hardware and piped through a local network to 
a the microwave link. This RF link consists of a 300 ft 
antenna and a robust 4.2 GHz Freewave link direct to 
the campus network. The antenna and RF equipment are located approximately 900 ft 
from the test site. Once the information arrives at the main campus it is routed to the 
appropriate destination via secure links. 

Figure 8.1. RF antenna - Meeman forest 
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The laboratory is configured to allow deployment of static and mesh sensor networks 
This configuration is centered on a base station 
that is in charge of routing stand alone and 
mesh-network data to the RF link. The base 
stations can also act as sensor test point. The 
implemented architecture also has the flexibility 
to   accommodate   multiple   base   stations   if 
necessary.    This    means    that    any    desired 
combination of sensor network can be easily 
implemented and deployed. A diagram of the 
network layout is shown in Figure 8.2. 

ftt£«r»M»»4 

BR 

UttoHtiiroltteMt« 

Figure 8.2. Network layout 

Mesh networks based on XBee ZigBee modules 
and static nodes using XBee Wi-Fi modules 
were   tested.   These   modules   were   chosen 
because they offer a simple standard interface 
and their low power usage (see Figure 8.3). The 
drawback is the speed limitation imposed by the 
serial    interface.       A   maximum   speed   of 
240Kbaud    limits    the    amount    of   usable 
information that can be transmitted. On average, 
a 1.2MB data file will take 1 minute to transfer. 
This makes this configuration ill suited for video but highly efficient to monitor low data 
rate sensors, such as profiling sensors. The network can be 
configured to use standard Wi-Fi in order to achieve higher 
speeds. This change however, requires that additional steps be 
taken to maximize power efficiency of deployed sensor modules 
in order to extend their up-time. 

Several types of local hardware configurations for sensor control 
were evaluated. They range from the simplest "sensor atom" 
composed of an Arduino microcontroller, a pyroelectric detector 
and an XBee radio to a base station. The basic base station is 
single board computer. This computer is typically based on and Atom processor and runs 
Linux. This provides the flexibility and power of a full fledged PC computer but drawing 
a maximum power of 40Watts. If higher power efficiency is required this can be scaled 
down to an Arm processor computer such as a beagle board. 

Preliminary test indicate that with line of sight or near line of site placement of sensor 
nodes communications at over 1500ft can be easily maintained. This suggests that for 
practical deployment inter sensor node spacing of 300 to 500 feet is sustainable. The 
clear implication is that a substantial amount of terrain can be monitored with relatively 
few sensor nodes. On the other hand base stations deployed as direct gateways to the RF 
link must be deployed within line of site of it to maintain reliable communications. 

Figure 8.3. Xbee 
module 



Our initial deployment of the systems is shown in this diagram. We have chosen to use an 
open source Gentoo based platform for the sensor base station. This will provide control 
of most of the Meeman based communications. To this will be connected high bandwidth 
sensors such as forward-looking infrared camera and a low bandwidth sensor network. 
For this project, two FLIR Photon 640 sensors were obtained for configuration in the 
sensor network. The low bandwidth network will be a ZigBee sensor network consisting 
of MICAz motes with attached pyroelectric motion sensors deployed along a trail to 
monitor movement of animals and people. The MICAz motes allow for basic processing 
and present the possibility of just transferring the results of classifications. A distributed 
array of motion detecting sensors has been shown in some of our research to be highly 
effective in classifying humans and animals. We will deploy a PIR based version of this 
array along the trail. The initial array will consist of only three sensors but can be 
expanded. Studies have shown that very limit classification can be made with a single 
sensor. Our hope is to develop a three-sensor system with better performance. 

Many of the stated tasks for this portion of the research were not achieved due to delays 
and complications in implementing the network involved. Significant time was spent 
tracking down communication interference between our network router and the 
earthquake sensors. This interference was resulting in false reports of earthquake activity. 
A significant effort at providing additional shielding for our router seems to have solved 
the problem and we have made significant progress this summer. 

We expect to have our initial version of the network up and running by the first of 
September 2012. Over time we expect to expand the number, variety, and coverage of 
sensors in the network. This ultimately may require a dedicated landline or additional 
microwave link to support the bandwidth necessary. We plan to use this facility to 
perfomi testing of new sensors and algorithms, energy harvesting research, and smart 
tasking of sensors via intelligent networks. 

9.0 Conclusions 

The execution of this contract has resulted in some significant scientific and technical 
progress in support of intelligent, network-centric, sensors. We believe that this work has 
been of immediate benefit to the Army and will continue to pay dividends in technical 
achievement into the near future. Further publications will result directly and indirectly 
from this work. 



Appendix A. Published papers in support of this 
contract. 

Copies of all published papers completed as part of this cooperative agreement are 
provided following this page. 
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ABSTRACT 

The notion of a profiling sensor was first realized by a near-IR, retro-reflective prototype consisting of a vertical 
column of sparse detectors. Alternative arrangements of detectors have been implemented in which a subset of the 
detectors have been offset from the vertical column and placed at arbitrary locations along the anticipated path 
of the objects of interest. All prior work with the near-IR, retro-reflective profiling sensors has consisted of wired 
detectors. This paper advances this prior work by designing and implementing a wireless prototype version of a 
near-IR, retro-reflective profiling sensor in which each detector is a wireless sensor node. In this novel architecture, 
a base station is responsible for collecting all data from the detector sensor nodes and coordinating all pre- 
processing of data collected from the sensor nodes, including data re-alignment, before subsequent classification 
algorithms are executed. Such a wireless detector configuration advances deployment options for near-IR, retro- 
reflective profiling sensors. 

Keywords: Wireless profiling sensor, wireless sensor, neural network, object classification. 

1. INTRODUCTION 

The original notion of a profiling sensor was proposed by Ronnie Sartain of the U.S. Army Research Laboratory, 
in which objects traversing the field of view of a crude imaging sensor, consisting of a collection of sparse detectors, 
could be classified by examining their silhouettes.1 A vertical array, consisting of sixteen pairs of transmitters 
and reflectors, was first developed to produce sixteen parallel near-IR beams (Figure 1). A silhouette was then 
generated if the object traversing the specified trail would break the beams1-5 (Figure 2). It was proposed that 
a low-cost sensing device of this form would be useful for providing security surveillance for several applications, 
including the U.S.-Mexican border, to detect illegal activity and in other areas where the classification of objects 
is highly relevant.6 Because of the extent of the U.S.-Mexican border, using low-cost surveillance equipment 
would make it economically feasible to cover more areas than using traditional imaging sensing devices. 

The first profiling sensor involved a vertical array of sixteen near-IR retro-reflective sensors that generated a 
crude image.7 Each sensing element produced a near-IR retro-reflective beam perpendicular to a pairing reflecting 
surface mounted on an opposing pole.3,8,9 A classification algorithm would then take the raw data (broken or 
unbroken beam) generated by the profiling sensor to produce and classify an object's silhouette into one of three 
categories of interest (i.e. human, animal, or vehicle).8,9 As a next step to improve this prototype's versatility, 
a low-resource microcontroller was interfaced with this profiling sensor. The Digi International BL4S200 single- 
board-computer was used to store and classify data of the profiling sensor.10 Other hardware improvements, such 
as an interface handheld I/O box, were added later on to facilitate data access to the microcontroller without 
the need of a computer.9 Furthermore, an additional improvement included the arrangement of sensing elements 
into a custom arrangement9 (Figure 3) while still generating similar raw data that could be discriminated among 
the three classifications groups of interest.11 This new offset arrangement of detectors may provide a means by 
which the sensor could be more easily concealed. 

Further author information: 
E-raail: agalvis®iupui.edu, Telephone: 1 317 274 9726 
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Figure 1. Object passing through the parallel beams of a vertical array of a near-IR retro-reflective profiling sensor. 

Figure 2. Generated silhouette of a human after traversing through the profiling sensor. 

This paper focuses on a wireless neax-IR retro-reflective profiling sensor that can be thought of as a set of 
sixteen wireless sensing nodes that comprise the overall profiling sensor. Previous profiling sensor prototypes have 
used CX-RVM512 active near-IR detectors that depend on their own paring reflector. Each node in the wireless 
profiling sensor uses a Sharp GP2Y0D02YK0F13 (Figure 4) as the sensing element with a similar field of view 
to the CX-RVM5 but does not require a reflector to sense a change-of-state event. The Sharp GP2Y0D02YK0F 
sensing element can thus be thought as a touch-less switch that turns on (digital high) if an object obstructs 
the path of its infrared beam and turns off (digital low) if there is no obstruction. Additionally, to make the 
sensing node wireless, each sensing element has been hardwired to its own wireless transmitter: an OEM Radio 
Frequency (RF) board14 (Figure 5). A sensing node sends one packet containing the state and node identification 
data to a USB gateway receiver only if a change of state occurs (high-to-low or low-to-high) as an object passes 
through its field of view. The computer recording the data can then assign a binary value to each state and 
generate a silhouette representation of the object or process it by the classification algorithm described in the 
subsequent sections. 

The focus of this paper is to present the architecture and the interaction of a wireless profiling sensor with 
a computer. The computer software developed for this work integrates useful tools, such as object classification 
and object silhouette previews, which can be provided in a test scenario immediately after each passing object is 
detected. A trained classifier implemented by a back-propagation neural network is also introduced and shown 
to provide classification results of 94% accuracy in testing to date. 
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Figure 3. Object passing through the beams of a custom array near-IR retro-reflective profiling sensor. 

Figure 4. Sharp GP2Y0D02YK0F distance measuring sensor unit. 

Figure 5. OEM RF board (Left) and USB gateway receiver (Right). 

2. DATA LIBRARY 

In previous work done by Russomanno et al. at the University of Memphis, a near-IR profiling sensor was used 
to capture profiles of over 1000 objects in the field, including humans, animals, and vehicles.15 Each sample 
was captured at approximately 1 kHz and stored as a matrix of 16 binary strings corresponding to each of the 
16 sensing elements in the array.10 The length of each binary string depended upon the velocity at which the 
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object traveled through the specified field of view.9,16,17 In other words, a vehicle traveling at a higher velocity 
would correlate to shorter binary strings, while a vehicle traveling at a lower velocity would yield longer strings. 

Since the profiling sensor generates outputs comprised of zeroes and ones, it is especially convenient to use 
a back-propagation neural network as it preferably processes data that has been normalized. However, the 
architecture of the back-propagation neural network requires a fixed number of input arguments; therefore, it is 
necessary to compress all data into a fixed column dimension size. Thus, for this approach, an algorithm has 

' been used to achieve this defined length without significantly altering the data in the sample library. Figure 6 
shows silhouette images before and after the compression algorithm has been applied. After analyzing the same 
compression results in the remainder of the library samples, it was determined that no major resolution loss 
occurs if these are compressed to 256 columns. Therefore, a new database of silhouettes was generated with the 
compressed samples to use as the training and testing data set of the back-propagation neural network. 

#SftlB5fe 
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Figure 6. Silhouettes before compression and after compression: (a) Human silhouette before compression, (b) Human 
silhouette after compression, (c) Vehicle silhouette before compression, (d) Vehicle silhouette after compression, (e) Animal 
silhouette before compression, (f) Animal silhouette after compression 

In the original near-IR retro-reflective profiling sensor, each sensor recorded one bit per sampling cycle.16'17 

This generated a real-time recording of the obstruction and restoration of each sensor beam. In the wireless near- 
IR retro-reflective profiling sensor, individual transmitters send one packet for each change of state in a sensing 
node (object or no object obstruction) instead of frequently sampling the current state of each sensing element. 
This method reduces power consumption14 compared to the current model, which extends the useful fife of the 
device. A wireless sensor node only sends a packet at each change of state: one packet for obstruction and one 



packet for restoration of the beam. Using the time difference between changes of states, a computer algorithm 
generates the zeros and ones correlating to the obstruction and restoration, forming the 16 binary strings by a 
previously defined length (256 bits). Though the recording method is different than the original sensor in this 
new prototype, each of the sensing nodes has a comparable field of view as the original wired prototype, which 
does not affect the resolution of the recording and results in similar silhouette data as presented in Figure 7. 

Figure 7. Human silhouette generated by the wireless neai-IR retro-reflective profiling sensor. 

3. WIRELESS SENSING NODE HARDWARE 

In an effort to make the new profiling sensor independent from a pairing reflective surface, a near-IR distance 
sensing device was used to detect objects along the path of each sensing element. This sensing element is a single 
point distance module, which measures the distance from the emitting infrared diode to the reflecting surface of 
the object. Furthermore, the design of the sensing element used in this prototype is not considerably affected 
by environmental light or the reflective properties of the object up to a guaranteed distance of 80cm.13 The 
near-IR distance sensor module utilizes the triangulation principle: the laser path is initiated at the near-IR 
beam emitter, reflects off of the object, and is captured by the imager. When this event occurs, the output line 
of the sensor is set to a logical high, otherwise is set to low. The relationship between the emitter, object, and 
imager is shown in Figure 8. The horizontal distance from the emitter to the object relies on the following: 1) 
the angle created between the emitted laser path to the object and the reflected laser path to the imager; and 2) 
the distance between the IR beam and the imager. The horizontal distance can be easily calculated by Equation 
1, while Equation 2 utilizes the sine of the angle alpha to determine the horizontal distance.18 

IR Beam 
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Figure 8. Relative distances and angle between object and individual elements in the distance sensor. 
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To support wireless data transmission, each of the 16 distance sensing elements has been interfaced to their 
own OEM wireless transmitter. The OEM wireless transmitter has been programmed to send a packet of data 
when a change of logic state is received by the distance sensing element. A base station then gathers the data 
packets from the 16 wireless near-IR retro-reflective sensing nodes and processes them for object classification 
and silhouette image generation. Figure 9 shows the wireless near-IR retro-reflective profiling sensor system 
made up of 16 near-IR wireless sensing nodes and one base station that receives the packets from each node. 
However, specific I/O requirements between the OEM wireless transmitters and the near-IR distance sensing 
device required additional hardware that would not only need to regulate the voltage to each device, but the 
signal going from the sensing element to the transmitter. Figure 10 shows a block diagram representation of one 
near-IR wireless sensing node. 
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Figure 9. Wireless near-IR retro-reflective profiling sensor made up of 16 near-IR sensor nodes. A base station collects 
the packets from each change of state event as an object crosses through the IR beams. 

The OEM wireless transmitters have been used in this wireless profiling sensor because they can be easily 
interfaced with external digital and analog devices. Finally, each transmitter supports multiple transmission 
frequencies options:14 the ISM Band 902-928MHz has been used in the complete wireless near-IR retro-reflective 
profiling sensor. 

4. DATA ACQUISITION 

To gain adequate data to identify a passing object, the status of each node must only be known at two stages: 
when the object first obstructs the beam and when the beam is restored. Previous profiling sensor prototypes 
utilize a constant collection of data at a set frequency for its method of data acquisition.16,17 As previously 
mentioned in section 2, a similar data acquisition method would quickly drain the battery of the wireless pro- 
filing sensor since the transmitter needs to pull current for every packet transmission.14 Therefore, we have 
implemented a data acquisition method that not only uses the battery more efficiently, but only uses one data 
packet per change of state from each sensing element to generate the necessary raw data. 
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Figure 10. Wireless near-IR retro-reflective sensor node block diagram. 

In the wireless profiling sensor, there is a designated trigger node that alerts the base station to the presence 
of an object. When this node detects an obstruction, the base station will begin recording data from all sensing 
nodes for a period of time specified in sensor's configuration setup. This packet contains the state of the node 
and the source node identification number. The state of the node is a binary code in which zero (0) indicates 
an unbroken beam and one (1) indicates an obstructed beam. As the base station gathers data packets, it will 
also record the time in milliseconds of when each packet is received. After the specified recording time expires, 
the base station ceases to record data. The recording of one object during this period of time is denoted as 
one recorded event. The base station sorts the coDected transmission records of the recorded event by source 
node identification numbers. Then an algorithm determines the time length of the recorded event by calculating 
the difference between the time stamp of the final packet received and the time stamp of the initial packet 
received. In previous prototypes, time stamps were unnecessary because of the continuous data recording, but 
since this new prototype collects data only when a change of state occurs, we must generate the frequency of 
data acquisition for our non-constant rate to develop a binary matrix representation of this data. 

The resulting binary matrix is a 16 x m matrix in which every entry corresponds to a low or a high bit reading 
at a point in the sampling. To generate this matrix with the collection of time samples received, the total time 
length of the recording At is calculated by subtracting the time of the first packet received to from the time the 
last packet is received, tf. Equation 3 is then used to find the length of a time segment that will eventually be 
replaced by a binary value corresponding to the node state in that time interval. Additionally, it — ta is the time 
difference from a change of state within At. As shown in Equation 4, i;, — ta is divided by the result in Equation 
3 so that this time interval can be interpreted as a sequence of bits describing the constant state of the (ta,tb) 
interval. Figure 11 is a visual representation of this procedure. Repeating this procedure for each sensing node 
generates the 16 necessary binary rows malting up the entire binary matrix of the silhouette. Finally, this matrix 
is then used to generate a silhouette image of the passing object, as well as input data to a back-propagation 
neural network for its classification. 
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Figure 11. Populating a binary row by using a change-of-state-time-segmentation method. 

5. CLASSIFICATION AND RESULTS 

Although the original raw data had varying column dimensions, it has been shown that compressed data with 
a fixed number of columns produces virtually no alterations in the silhouette resolution in the analyzed library. 
Since a back-propagation neural network is used to classify the data, a fixed number of inputs were required to 
obtain a classification result. After normalizing the data to 256 columns, the back-propagation neural network was 
trained with half the data set within the compressed library. This neural network is comprised of 256 x 16 = 4096 
processing elements in the input layer, 20 processing elements in the hidden layer, and 3 processing elements in 
the output layer. This configuration was observed to provide the best classification results compared with other 
back-propagation neural networks with differing numbers of processing elements within the hidden layer. The 
method used to train the neural network was from Ebehart and Shi.19 

Figure 12. Matrix vectorization: all rows from a two-dimensional matrix are put sequentially into a linear array. 

To make the matrix easier to handle by the neural network, the binary matrix has been vectorized, a process 
in which all rows are combined sequentially (Figure 12). Each processing element in the input layer uses each 
bit entry in the vector matrix as the argument to a sigmoid function (Equation 5), which will generate a real 
value between 0 and 1. The output values from each processing element in the previous layer become the input 
values for each of the processing elements in the subsequent layer. The edges connecting the processing elements 
from one layer to its subsequent layer have a weight value which is generated during the training process of the 
neural network. The weight of the edge is then multiplied by the input for each processing element in the hidden 
layer. The sum of these 4096 products becomes the argument for the sigmoid function of the hidden layer. This 
process is repeated from the hidden layer to the output layer to generate 3 output values. A schematic of this 
neural network is shown in Figure 13. Equations 6 and 7 are used to calculate the input values to the processing 
elements in the hidden and output layer. The values v^ and Wji denote the weight values from the input to the 
hidden la}'er and from the hidden to the output layer, respectively, all which are generated during the training 
of the neural network. Furthermore, notice that the sum of products begin from h = 0 and i = 0, the bias 
processing elements, which take an input value of 1. 
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Figure 13. Back-propagation neural network with 4096 input processing elements, 20 hidden processing elements, and 3 
output processing elements. Bias processing elements are denoted by b and these take an input value of 1. 
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The output values in the output layer are positive real numbers between 0 and 1; the output processing 
element with the highest value indicates the classification of the input. A total of 577 test samples from three 
classes were classified by the back-propagation neural network. The distribution of the test samples from each 
class is shown in Figure 14. When the neural network assesses the entire set of testing data, 94% of the data 
is properly sorted into the correct classification groups (Figure 15). All of this data was previously collected by 
the vertical sparse array profiling sensor. 
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Figure 14. Distribution of number of samples per class within the testing data set. 

Unlike the vertical sparse array profiling sensor, the new wireless prototype allows for a small horizontal offset 
of approximately 5-10 inches. This offset is achieved without significantly diminishing the classification accuracy. 



However, to maintain this high level of accuracy, passing objects must have an approximately constant velocity.9 

When a passing object changes its velocity in the horizontal space between each sensing node, the silhouette will 
be significantly distorted and classification results can be affected. Therefore, increasing the horizontal spacing 
between these nodes increases the risk of incorrectly classifying the passing object. It was determined that keeping 
horizontal distances within 5 inches will correctly classify the data close to 94% accuracy. For convenience, the 
existing data library, comprised of data collected using a vertical sparse array profiling sensor, was used to train 
the back-propagation neural network in this experiment. However, for any configuration of sensing nodes, a new 
data library can be populated and used to retrain the neural network to evaluate its classification performance. 
Finally, the confusion matrix that shows the performance of the classification algorithm in this test is shown in 
Table 1. 
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Figure 15. Classification results (a) Overall combined percent of correct and incorrect classification results, (b) Correct 
and incorrect classification results by object classes. 

Table 1. Confusion matrix of classification results. 

Predicted Class 

Actual Class 

Human Animal Vehicle 
Human 306 20 7 
Animal 4 77 0 
Vehicle 0 0 163 



6. CONCLUSION 

By combining the Sharp GP2Y0D02YK0F with an OEM RF board, a wireless profiling sensor prototype was 
designed and tested with highly accurate results in classifying passing objects at close range. As shown in these 
experiments, the Sharp GP2Y0D02YK0F proximity sensor can be used to collect data in a similar way to the 
CX-RVM5 IR based profiling sensor. The data collected by the proximity sensors is generated by using only 
two packets of data, one for a broken beam and one when the beam is restored. There is no significant loss of 
silhouette resolution when the normalized binary matrix is generated. Furthermore, this input into the back- 
propagation neural network is used to train and classify data, producing correct classifications with up to 94% 
accuracy. In addition to the increasing processing capabilities, the flexibility to deploy these sensors in the field 
is increased by allowing each sensing node to have a horizontal offset. Overall, this new design of the profiling 
sensor is an incremental improvement as compared to the original, wired profiling sensor prototype. 

In continuing this work, we plan to collect data using the wireless profiling sensor using several different 
sensing node placement configurations. This information will be used to retrain the back-propagation neural 
network and test the classification performance of different arrangements of sensing nodes. Additionally, we will 
modify the OEM wireless transmitter software to allow each sensing node to calculate the relative position of all 
of the other sensing nodes; thus eliminating the need to train the neural network for each new configuration of 
elements. This will ideally allow for completely randomized configurations, rather than positioning the nodes in 
set and tested patterns. 
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/4£jfracrf--Data-to-decision systems must fuse information from 
heterogeneous sources to infer a high-level understanding of a 
situation. A high degree of confidence in the inferred knowledge is 
necessary for appropriate actions to be taken based upon the 
assessment of a situation. This paper presents an extensible 
Semantic Web compatible framework that uses rich ontological 
descriptions for the autonomous and human-aided fusion of 
heterogeneous sensors and algorithms to create evidence-based 
hypotheses of a situation under persistent surveillance. Raw data 
acquired from profiling sensors is combined with the output of 
visualization and classification algorithms, yielding information 
with a higher degree of confidence than what would be obtained 
without the fusion process. The framework can readily 
accommodate other data sources and algorithms into the fusion 
process. 

KEYWORDS: Semantic Web, Ontology, Sensor Network, Data 
Fusion, Situation Awareness, Data to Decision Framework, 
Autonomous Decision Systems 

confidence in the inferred knowledge is critical to timely and 
appropriate actions. 

Integration of sensor data with algorithmic processes and 
human-controlled information systems poses a significant 
challenge for network-centric sensor frameworks. Fig. 1 is a 
summary of the classical Joint Director of Laboratories (JDL) 
fusion levels [2], augmented with a knowledge management 
component [3], These six fusion levels cover both automated 
and "human in the loop" processing of data and knowledge. 
The model supports the concept of autonomous algorithms and 
human users contributing to an evolving solution state in which 
fused information may enable the identification and assessment 
of strategies and tactics for counterintelligence [3-5]. The JDL 
model is useful for describing the conceptual framework within 
which a particular fusion process occurs and it also provides a 
reference for describing the level of fusion in an overall 
process. 

I. INTRODUCTION 

The fusion of data from heterogeneous sources, such as 
sensors and intelligence reports, is integral to the inference of 
highly reliable, evidence-based knowledge of a situation. The 
degree of confidence in the inferred knowledge improves with 
further acquired evidence, that is, fusion of data from more 
sources. This paper describes an extensible Semantic Web 
compatible framework for the autonomous fusion of data from 
heterogeneous sensors and algorithms, allowing a human 
operator receiving the fused data to assess a situation with an 
increased confidence in the context of persistent surveillance. 

Situation awareness has been defined by Endsley [1] as 
follows: "the perception of elements in the environment within 
a volume of time and space, the comprehension of their 
meaning, and the projection of their status in the near future." 
Situation awareness is critical to decision making in many 
applications, such as, patient monitoring, emergency response, 
military command control, and border surveillance. 

Systems for situation awareness require the fusion of a 
myriad of data and knowledge sources, including disparate 
sensor systems, algorithms, and intelligence reports. Semi- 
automated and automated inference using fused data may lead 
to an enhanced knowledge about the entities of interest in a 
situation, as well as an increased confidence in 
interrelationships,   enabling   situation   awareness.   End   user 

Fig.  1. Six levels  of the data fusion mode] augmented with a data and 
knowledge management system. 

Multi-sensor data integration has been limited primarily by 
the lack of standards for data exchange and for describing 
sensor capabilities and specifications, which would enable their 
automated discovery, invocation, and composition with other 
sensors as part of process workflows [6-7]. The XML-based 
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data formats and standards, such as SensorML (Sensor Markup 
Language)1 and the Observations and Measurements (O&M) 
Schema have been adopted by the Sensor Web Enablement 
(SWE) [8] initiative of the Open Geospatial Consortium 
(OGC)3 to mitigate these deficiencies. The SWE initiative aims 
to bring together Web connected sensors of all types in a 
common framework for discovery, invocation, and tasking. 
The advent of the Semantic Web initiative [9] and its 
associated representational standards, such as the Web 
Ontology Language (OWL)* and the Resource Description 
Framework (RDF)5, has led to the development of sensor 
specific ontologies, such as OntoSensor [10] and the Sensor 
Data Ontology [11]. These ontologies contain computable 
descriptions (definitions) of sensors and sensor data, their 
properties, capabilities, and relationships. 

In this paper, we present an ontology-based framework 
that is capable of fusing raw data with the output of machine 
learning algorithms that process the given raw data; yielding 
further knowledge about a monitored situation. The framework 
is robust and flexible to accommodate a variety of algorithms 
and heterogeneous sensors by providing ontological 
descriptions of their input and output capabilities. Descriptions 
of these components, which use ontologically defined terms, 
allow capability-based matching of sensors and algorithms 
creating a plug-and-play architecture while eliminating the 
hurdles to their interoperability. 

II.      PROFILING SENSORS FOR SURVEILLANCE 

Persistance surveillance environments can contain a wide 
variety of sensor systems and algorithms. One such family 
includes profiling sensors, which are denoted by the 
nomenclature PFx. The PFx sensors are often regarded as 
crude 'imaging' devices and typically use a sparse detector 
array, as compared to a large focal plane array found in 
traditional cameras [12]. PFx sensors may be active or passive 
sensors that capture data about objects that pass through their 
field of view. For example, Fig. 2-a shows an active near- 
infrared version of a profiling sensor (PF|) with a sparse array 
of detectors in a vertical geo-location placement. 
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Fig. 2. PF| sensor system comprising (a) near infrared detectors in a vertical 
geo-location placement (b) sensor output formatted using run-length encoding 
and (c) output of an algorithm that produced a silhouette of the object. 

^ittpi/Zwww.openeeospatial.org/standards/sensorml 
1 http://www.openeeospatial.ore/standards/om 
3 http://www.openeeospatial.ore/ 
'http://www.w3.ore/TR/2009/WD-owl2-primer-20090611/ 
5 http://www.w3.ore/TR/rdf-primer/ 

One algorithm that operates on PFx data has the objective 
of visualizing the raw data as a crude profile or silhouette for 
human-aided classification. In addition, other algorithms 
operate on the PFx raw data and attempt to classify the data 
autonomously. For example, one approach is to attempt to 
classify the data into one of three classes: human, animal, or 
vehicle. Extensions of such algorithms may attempt a more 
refined classification, such as, human with backpack, light 
truck, etc. The PFx algorithms may use a variety of 
classification techniques, such as the naive Bayesian classifier 
[13], naive Bayesian with Linear Discriminant Analysis (NB- 
LDA) for dimensionality reduction [14], K-Nearest Neighbor 
(K-NN) classifier [15], Soft Linear Vector Quantization 
(SLVQ) [16], and Support Vector Machines (SVM) [17] for 
autonomous classification. A comprehensive set of papers on 
profiling sensors appears in [18-24]. 

A.   Application Scenario 
Consider a border patrol agent remotely monitoring an 

area for activity of interest. The agent may be interested in 
detecting humans attempting to cross a border with or without 
weapons and drugs using deployed PFx sensor systems. In 
many scenarios, there is a low tolerance for false positives, 
given the remoteness of a location under surveillance or the 
possible hostile environment. The raw data output of the sensor 
as seen in Fig. 2b contains very little information about the 
sensed entity to an end user. The silhouette generated from this 
data, shown in Fig. 2c, provides more information to an end 
user as to the outline of the detected entity. The agent is likely 
to recognize the silhouette in Fig. 2-c as that of a human. 
However, some silhouettes are much less informative to an end 
user as in Fig. 3. In such cases, the silhouette needs to be 
supplemented with other information to increase the agent's 
confidence that the object is indeed human or a truck, animal, 
etc. A classification algorithm capable of processing the raw 
data or the silhouettes may yield such supplemental 
information. As a rudimentary fusion scenario, the agent could 
be provided with the silhouette in addition to the output of the 
classification algorithm. In many instances, the combined 
information may increase the agent's confidence in a given 
hypothesis. 

Fig. 3. Examples of less informative silhouettes to end users 

III. FUSION FRAMEWORK 

The ontology-based framework facilitates the integration 
of raw data from sensor systems and the output of algorithms 
that process either the raw data or other intermediary data 
formats to create high-level knowledge of the sensed 
environment. The current fusion framework described in this 
paper is an extension to previous work of the authors that 
focused on autonomous matching of sensor systems to 
algorithms which in turn were assigned to missions [25-26]. 



A.   Ontology and Rule Framework 
The framework was implemented using Description Logic 

(DL) ontologies in preference to conventional relational 
databases because of the machine interpretable formal logic 
based semantics and the inference capabilities of the former. 
The ontology (excerpt as an UML diagram in Fig. 4) was 
created using TopBraid Composer*. 

The DataFusion instance has been defined as an aggregate 
of exactly one or more DataFusionComponent instances which 
may be either an Image instance or an AlgorithmOutput 
instance. The Image instance is the product of a 
SimpleSensorSystem instance, which comprises a Sensor 
instance and an Algoritlim instance. The AlgoritlvnOutput 
instance is the product of an Algorithm instance. Both the 
Sensor and Algoritlim classes are the root of an extended 
hierarchy (not shown here, refer to [25] and [26]) that covers 
many different sensor system types, such as electromagnetic, 
chemical, and radar, as well as algorithmic processes, such as 
profile generators, visualizers, classifiers and neural networks. 
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Fig. 5. An image from a sensor system 
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Fig. 4. Core ontology for sensor data fusion represented in UML 
Fig. 6. Fusion of the image with the output from another component; an SVM 
classifier algorithm 

The philosophy behind the class diagram is explained in 
Figs. 5-8, by the object diagrams adjoining each of the outputs. 
Fig. 5 shows a simple silhouette that has been generated by a 
sensor system comprising a PFi sensor and a visualizing 
algorithm. A human user may be able to recognize this image 
as that of a human. In comparison, Fig. 6 shows the silhouette 
in addition to the output of a simple classifier algorithm, 
implemented by a Support Vector Machine, which classifies 
the image as a human with 90% certainty. Fig. 7 shows the 
simouette supplemented by the output of a Bayesian classifier, 
which categorizes the silhouette as that of a human with 93% 
certainty. Lastly, Fig. 8 illustrates the fusion of the outputs of 
both classifiers and presents all the results together with the 
silhouette. The image and the classifier(s) outputs are modeled 
as components of the Data Fusion instance. 
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B.   PFx Example 
We have developed an application in a persistence 

surveillance context to demonstrate the utility of the ontology- 
based framework for the fusion of data from sensor systems 
and algorithms. The purpose of the mission is to provide raw 
surveillance data with algorithmically derived profiles and 
classifications to a human observer in a remote location. Given 
the ontological definitions of the components shown in Fig. 9, 
the framework generated a DalaFusion instance to detect 
human activity in an area under surveillance. 

StnMor. PF1 sparse detector 

Properties: 
hasSensorOulputDetaFormat 

Algorithm: AP1 Autonomous human classifier 

Properties: 
haaAlgorilhmlnpulDataFormat "image' 
hasAlgorithmOutputDataFormat "human" 

A/oortUim: AP2 Slhouette Viewer 

Properties: 
hasAlgorlthmlnputDataFormat "text" 
hasAlgorithmOutputDataFormat       "Image* 

Fig.   9. Components with associated properties to be used in a surveillance 
mission 

Fusion of data from a profiling sensor and a classifier 
algorithm is accomplished with a SPARQL7 query. The 
algorithms (Java functions) are invoked using a feature, which 
is part of the SPARQL library, called the SPARQL Inferencing 
Notation (SPIN)8 developed by TopQuadrant Inc. Fig. 10 
shows an example of the SPARQL query that is used to 
generate the DalaFusion instance that combines a profiling 
sensor data output to the output of a visualizer. The adjoining 
object diagram illustrates the ontology instantiation in the 
CONSTRUCT query. 
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Fig. 10. SPARQL query for invoking an algorithm 

In the query, the BIND clause in the last highlighted line 
contains the invocation to a Java class, which is wrapped as 
http://ksl.engr.iuvmiedu/resourceffSilhouetteViewer (aliased as 
ksliures:SilhouetteViewer), an RDF resource. 

The coupling between sensor system output and algorithm 
inputs is based upon compatible data formats. Datatype 
properties such as liasAlgorithmlnputDataFormat and 
hasSensorOutputDataFormat map the specific component to 
an enumeration of string literals such as "Text_Data" or 
"Static_Image." To combine this output with the output from a 
classifier algorithm, the query in Fig. 10 can be extended to 
add an invocation to a classifier algorithm as shown in Fig. 11. 
The new invocation has been highlighted in grey in the figure. 
Note the new component that has been added to the 
DalaFusion instance in the object diagram. 
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IV.      DISCUSSION 

We have presented a simple ontology-based framework 
which fuses data from multiple sources enabling situation 
awareness for a human operator. There are two important 
points to emphasize. First, the ontological framework may 
facilitate resource control. By having a human operator verify 
the  human  activity  detected  by  the  sensor systems  and 
algorithmic processes, appropriate decisions can be made in 
response to the sensed event. The human operator helps the 
framework   avoid   false   positives   from   the   autonomous 
algorithmic    process,    thus    managing    critical    resources 
optimally, such as deploying unmanned aerial vehicles for 
further reconnaissance.   Second, the ontological framework 
produces sensor fusion by fusing the two pieces of information 
from the profile visualizer and the autonomous classifier, 
which is more valuable to a human operator making decisions 
than just having access to one piece of information. Therefore, 
the  presented  framework  is   essentially  a  data-to-decision 
framework.   The   framework   can   also   be   extended   to 
accommodate heterogeneous sensors, such as vibration and 
acoustic sensors in addition to the profiling sensors. Fig.   12 
shows an extension of the data fusion concept introduced in 
Figs. 5-8 to include outputs from heterogeneous sensors, such 
as profiling sensors and vibration sensors, in combination with 
different  classification  algorithms  to  provide  much  more 
information about the situation. Outputs from other sensors, 
such as cameras and acoustic sensors (not shown here) can also 
be combined in this manner. 
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Fig. 12. Data fusion from heterogeneous sensors results in more evidence being 
presented to a human agent 

In terms of the JDL sensor fusion model, the ontological 
framework performs level 1 object refinement when the 
DataFusion instance fuses the generated profiles to 
autonomous classifications. Level 5 cognitive refinement (user 
refinement) also takes place when the synthesized DataFusion 
instance fuses with a human operator's decision to verify the 
autonomous classification via the visualized profile. 

v.      CONCLUSIONS AND FUTURE DIRECTIONS 

The ontology-based framework presented in this paper 
can be used to present fused information obtained from various 

sources to a human observer so as to improve confidence in the 
perceived situation. Sensor systems can be tasked, algorithms 
can be dynamically invoked from this framework, and the 
output data can be assimilated and presented to a human agent 
enabling situation awareness and appropriate decision making. 

A shortcoming of the current framework is the necessity to 
explicitly specify the matching criteria for the sensor systems 
in the SPARQL query. Note the SPARQL query example in 
Fig. 10 invoking the silhouette viewer algorithm. If a classifier 
algorithm needed to be integrated and invoked as well, an extra 
constraint would have to be added in the WHERE clause and at 
least two other unmatched variables would need to be specified 
in the query. Given the inherent nesting of the sensor systems 
in the generated system, we are working on an interface for 
dynamically generating the SPARQL query from the 
specifications of the selected components. This interface would 
be the backend for a GUI- based application where each of the 
components would be displayed on a selection panel. 

We are also investigating the use of REST services [27-28] 
to encapsulate the sensor systems and algorithms in a service- 
oriented architecture (SOA). Each component would be 
exposed as an endpoint interface with a specific URL The 
specifications of each component would be encoded in a 
Semantic Web compatible format to enable discovery, 
invocation, and dynamic composition on an intranet or even 
the secure Internet. 

In the future, the fusion architecture is to be expanded to 
accommodate multiple profiling sensors in a given area. For 
example, there may be M profiling sensors along a path and N 
different classification algorithms. The fusion architecture 
could be tasked to produce an output that combines and 
appropriately summarizes the outputs of all these components 
for an end user, as shown in Fig. 13. The next logical step 
would be to use heterogeneous sensors, such as acoustic and 
vibration sensors and their corresponding classifying 
algorithms, to enable situation awareness. 

Sensors Algorithms 

Infrared senso 

Fig.    13. Data fusion combining output from heterogeneous sensors with 
multiple algorithms 
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ABSTRACT 

A profiling sensor has been realized using a vertical column of sparse detectors with the sensor's optical axis configured 
perpendicular to the plane of the vertical column of detectors. Traditionally, detectors of the profiling sensor are placed 
in a sparse vertical column configuration. A subset of the detectors may be removed from the vertical column and placed 
at arbitrary locations along the anticipated path of the objects of interest, forming a custom detector array configuration. 
Objects passing through the profiling sensor's field of view have traditionally been classified via algorithms processed 
off-line. However, reconstruction of the object profile is impossible unless the detectors are placed at a known location 
relative to each other. Measuring these detector locations relative to each other can be particularly time consuming, 
making this process impractical for custom detector configuration in the field. This paper describes a method that can be 
used to determine a detector's relative location to other detectors by passing a known profile through the sensor's field of 
view as part of the configuration process. Real-time classification results produced by the embedded controller for a 
variety of objects of interest are also described in the paper. 

Keywords: Persistent surveillance sensor, profiling sensors, embedded controller, classification, object detection, 
customizable sensor arrangement 

1.   INTRODUCTION 

Profiling sensors encompass a family of sensor devices and configurations that are used to acquire profiles or silhouette 
data of objects of interest for classification purposes1.   Variations include employing an array of active near-IR trip 
sensors, a passive pyroelectric approach2,3, as well as extracting a subset of pixels from the image of conventional 
imagers to emulate a sparse detector array4'5,6. Deployment scenarios for such profile sensors include border monitoring 
over open terrain for persistent surveillance. Profiling sensors must be able to automatically distinguish between humans 
and non-human objects, such as deer, rabbits, horses and other animals that reside in the area of interest. Objects are 
desired to be classified as either human, vehicle, or animal. 

The profile sensor considered for implementation in this paper utilizes a vertically oriented column of sixteen near-IR 
optical trip wires (OTWs). These detectors are arranged approximately 5 inches apart from one another, forming a 
sparse array with their optical axes configured perpendicular to the plane of the vertical column as shown in Figure 1 (a). 
Each detector is coupled with its own reflector mounted on an opposing platform7,8,9. Objects that pass through the 
beams record the 'on' or 'off state for each detector for a particular time sample, which is then recorded. The object 
profile is generated by collecting the collection of time samples in which a detector break-beam triggering event 
occurred, forming a silhouette of the object that passed through the beams of the array as shown in Figure 1 (b). The 
active IR sensing elements require that a subject pass through the beams to be detected. This requirement limits the 
OTW to deployments in which objects of interest must pass through a very constricted area. 
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Detectors of the profiling sensor are traditionally placed in a sparse vertical column configuration. Since no horizontal 
spacing exists between the sensing elements, profiles generated by the vertical column are constructed by placing the 
recorded time samples next to each other. 

m        :-U 

(a) (b) 
Figure 1 (a) Traditional profile sensor with vertically oriented detectors and (b) example profile of a horse generated by a 
profile sensor with vertically oriented detectors 

Requiring a subject to pass through the sensor to obtain its profile presents a limitation that is easy to counter. If a 
person recognizes the sensor that is being used to monitor him/her, he/she merely needs to walk around the sensor to 
avoid detection. Good concealment is therefore essential. Part of the concealment may be done by breaking the vertical 
array apart, and distributing the detectors along an anticipated path of objects of interest; thereby, reducing the obtrusive 
size of the single array pole and its reflector8, l0. An alternative profiling sensor prototype design is shown in Figure 2. 
Note that this particular configuration is a prototype with horizontal distances of approximately 15-35 cm between 
detectors. Actual field implementation would place individual detectors where maximum concealment can be achieved, 
possibly with significantly greater horizontal separation. 

Figure 2: Customized sensor array prototype 



Acquiring a profile from the detector elements that are not in the same plane requires that the precise locations of the 
detector elements be known to synchronize timing between them. Measuring these distances by conventional techniques 
is particularly time-consuming, especially if the detectors are to be placed at significant horizontal distances from each 
other. Long setup/measurement time makes the custom configurations impractical for deployment in the field, especially 
when deployment time is minimal. A quick method of measuring the distance between the detectors is therefore 
warranted. 

2.   SIMPLE CLASSIFICATION TECHINQUE USING CUSTOM ARRAY 

A simple classifier can be implemented using the custom array by summing the 'on' and 'off states of the detector along 
each row as an object passes through the sensor. The summation data along each row is treated as an independent 
feature and compared to training data sets of human, vehicle, or animal. The object is subsequently classified using 
Naive Bayesian classifier. A leave-one-out classification study against the profile sensor's acquired sample library 
revealed that this technique can obtain a 92% classification rate using Mahalanobis distance. Its ease of implementation 
makes it particularly appealing for a low-resource microcontroller. However, the technique fails to calculate the object's 
velocity or its direction of travel, both of which may provide valuable information on a passing subject. Higher-yielding 
classification algorithms have been developed for profiles generated by the sensor with vertically oriented detectors7,8,11. 
However, to utilize these algorithms, the profile must be reconstructed to appear as if it were generated by the sensor 
with vertically oriented detectors. 

3.   CUSTOM ARRAY PROFILE RECONSTRUCTION TECHNIQUE 

Detector timing for the vertical column configuration is synchronized by the placement of the detectors along the same 
column, as illustrated by Figure 3. Most subjects passing through the sensor's field of view do not have a flat leading 
edge; therefore, their profiles will illustrate a non-straight edge. Passing a straight, vertical object through the array will 
cause all 16 detectors to trip simultaneously, as illustrated by Figure 4. 
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Figure 3: Subject passing through a vertical column sensor Figure 4: Vertically straight object passing through vertical array 

Removing these detectors from the same column destroys the synchronization between them. Passing the straight 
vertical object through an array in which the detectors are not vertically co-located will create a profile in which the 
detector elements 'on' and 'off times are modified by the placement of the detectors. Figure 5 illustrates the passing of 
a vertically straight object through a modified array. Passing this rectangular 'calibration rectangle' through the sensor is 
done as part of a calibration routine to define the distances between each detector pair. Since it is known that the leading 
edge of this rectangular object is vertically straight, the physical location of the detectors can be determined by counting 
the number of time samples between a detector pair's first transition state. For example, if there are X time samples 



between detectors on row i and row./, then it can be assumed that the physical distance between detectors on rows i and; 
for subsequent samples should be offset by the same X number of time samples. The number of samples between rows 
is found by searching for the first transition state of each row from 'on' to 'off, corresponding to the leading edge of the 
passing rectangle. Similarly, the trailing edge may also be used if the calibrating vertical object has a vertical rear edge. 
Note that the vertical calibration rectangle must be passed through the array at a relatively constant speed to trip the 
detectors at their correct physical locations. 
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Figure 5: Vertically straight object passing through custom array 

These time differences (corresponding to the positions of the individual detectors) are then subtracted from the raw 
timing profile of each subsequent subject passing through the array to rebuild the proper profile. Figure 6 illustrates a 
subject passing through the prototype custom array, raw profile generation and the subsequent reconstruction of the raw 
profile data to form a properly oriented profile. 
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Figure 6: Subject profile reconstruction after passing through custom array 

4.   IMPLEMENTATION 

Experimentation for the custom array was realized by placing the detector locations at specified heights and random 
locations. Detectors are placed at random horizontal locations on rows that are vertically separated 5" from each other, 
consistent with the 5" separation between detectors of the vertical column array profile sensor. This implementation was 
realized by modifying the single-column array. The single-column array is constructed of PVC pipe sections and is 



designed for rapid field data collection deployment. Detectors of the single column array are paired into two-element 
sections for ease of alignment and to minimize the number of necessary electrical connections. The eight detector pairs 
are removed from the column array and placed on a section of PVC pipe to set them at their original vertical heights. 
Horizontal spacing is random. 
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Figure 7: Custom sensor array prototype realized on PVC pipe. 

Note that the detector arrangement in Figure 7 shows the detectors in a roughly diagonal pattern. Detector placements do 
not necessarily require such an arrangement, but may be arranged in any fashion. This particular configuration was 
merely chosen as an illustration for this paper and to construct the prototype in Figure 7. Also note that the element pairs 
do not necessarily have to lie on the same vertical plane. Detectors in Figure 7 were left paired together, due to their 
construction Figure 8 (a) illustrates a human carrying a 2x4 vertically through the sensor (moving from left to right 
through the sensor in Figure 7) as part of a calibration routine. The calibration routine detennines the first transition state 
of each detector and finds the time difference between the profile's first detector's trigger event and the first trigger event 
along each row. The profile is 'straightened' by subtracting these time differences along their respective rows, as shown 
in Figure 8. Note that the same 2x4 beam is shown again in Figure 8 (b) in a more recognizable format. 
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(a) (b) 
Figure 8: Person carrying a vertical object through the custom sensor array of Figure 7; (a) uncorrected and (b) corrected. 
Vertical beam is shown in oval. 
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Figure 9: Reconstructed human profile collected with custom array 

Subsequent data acquisitions have this same row shifting routine performed on them. Figure 9 shows the corrected 
profile of a person passing through the array without the 2x4 used for detector timing calibration. This technique of 
shifting the start position of each of the rows appears to account for the random horizontal placement of detectors. 
Although the array may be placed in any customized configuration, the specific detector locations must remain fixed 
after the calibration routine is executed. If the array is modified, the calibration routine must be performed again to find 
the detectors' positions relative to one another. 

Note that data collected from the vertical column array profile sensor consists of timing samples. A slowly travelling 
subject will generate a profile of greater width than if it were to pass through the sensor quickly. Thus, the number of 
time samples used to generate a profile alone is not an accurate measurement tool to indicate the physical width of the 
passing subject. Merely applying the time sample shifting to each of the rows is not an entirely accurate method of 
realigning a profile since subjects may pass through the array at speeds other than which the detector distances were 
calibrated. Since / = d/v, the amount of shift t applied to each row is a function of the detector element distances d and 
the velocity v of the travelling subject, not merely a count of the number of time samples between rows. Subjects with a 
speed v, which may be different than that of objects used in the calibration, will, therefore, have malformed rebuild 
profiles. Furthermore, correcting the profiles due to time only does not account for the direction of travel that a subject 
may take through the sensor. Travelling in the direction opposite from what the array was calibrated causes the row data 
to be shifted in the opposite direction as shown in Figure 10 (b). Although this technique of profile rebuilding may work 
appropriately if we make the assumption that subjects will always pass at the same speed, it fails when the assumption is 
violated. Therefore, a more robust calculation technique is required. 
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(a) 
Figure 10: Incorrect 'corrected' arrays caused by (a) speed other than calibration speed and (b) travelling opposite direction 
from calibration route. 



5.   VELOCITY CALCULATION AND INCORPORATION 

A more accurate method of correctly rebuilding the profiles requires that the physical distances between detectors and 
the actual velocity of the passing subject be determined. Using these parameters, a more accurate time shifting value 
may be calculated for each detector state. Timing differences between the detectors are directly proportional to the 
horizontal distances between them and are determined by passing a vertically oriented object through the array as 
described earlier. However, the distance between any one pair of detector elements must be known. Ratios of the 
numbers of time samples recorded between element pairs are computed. Assuming that the calibration rectangle is 
passed through the sensor at a relatively constant speed, the physical distances are a product of the time ratios between 
the detectors and the known horizontal distance between the two designated detectors. These distances are calculated 
several times as part of the calibration routine and averaged along each row. 

A subject's velocity through the profile sensor is calculated by averaging the individual velocities v,y generated between 
every possible detector pair along the leading and trailing edges of the profile, given by the expression 

mean velocity 
M(M - 1) I       I * 

wermost j = i+l i=lowermost 
detector trigger event 

0) 

where i i- j, and M = the uppermost detector trigger event3. Velocity between each detector pair is defined as 
v,y = dy I tjj where dy is the physical distance between detectors ;' and;', and ty is the number of samples between the 
detectors i and; to the leading or trailing edge of the profile. Although seemingly computationally intense, the number 
of detector pair velocity calculations is limited to M*(M-1) / 2, where the maximum value of M is the number of 
detectors in the array; a maximum of only 120 possible calculations along each edge is possible for a 16 detector array. 
Combinations where t=0 cause division by zero and are not considered. The implementation of the vertically paired 
sensor detectors causes horizontal pairings to have a time difference of zero, thereby eliminating those particular detector 
pair velocity calculations from consideration and further reducing the computational requirements of the microcontroller. 

A rectangular-shaped object passing through the sensor would generate constant detector pair velocities. Upright, 
walking humans are mostly rectangular in shape, generating similar velocities along the horizontal detector pairings for 
the front and rear edges of the profile. However, not all profiles share this rectangular pattern. The overhanging head of 
an animal, sloped vehicle windshields, swinging arms, etc., caused by premature detector triggering, can generate 
abnormal detector pair velocity calculations. These particular velocities are eliminated by setting a threshold of a 
maximum reasonable velocity for individual calculated velocity values vy. 

Once an overall subject velocity is calculated, the amount of time required to shift each row ty is calculated in samples by 
ttj = djj/v, where dij is the physical distance between the detector elements i and; found from the calibration routine. 
Note that this velocity calculation is capable of generating both positive and negative values; with this data a direction of 
travel through the gates can be determined. Figure 11 illustrates the more properly reconstructed data of the same 
profiles found in Figure 10 by this more accurate technique. 
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(a) (b) 
Figure 11: more accurately reconstructed profiles of Figure 10 generated by velocity incorporation. 



6.   RESULTS 

The low resource microcontroller has proven to be effective at rebuilding profiles from a custom array when utilizing the 
passing object's velocity. Figure 12 illustrates the raw and reconstructed profiles for several objects passing through the 
custom array. 

Figure 12: I reconstructed profiles collected by custom array 

Incorporation of velocity allows a more accurate profile width to be determined from data acquired from profiling 
sensors3. Classification algorithms, such as the height/width ratio and six-feature technique, are based strongly on the 
width of the sample3,11. Improving the determination of the width of an object will improve the overall classification of 
objects by profiling sensors. However, to date, there are few samples within our library of profiles10 that have the 
physical width derived based on the subject's velocity. This "distance" library is composed of profiles of 30 humans, 32 
animals, and 29 vehicles. Comparison of a distance-based width profile to the timing-based width of profiles acquired 
by the vertical array profile sensor is likely to lead to fallacious results.   Take-one-out classification studies were 
performed on the data within our library utilizing the height-width ratio and six-feature techniques with 54% and 85% 
results, respectively. Classification confusion matrices for the two classification techniques are displayed in Tables la 
and lb. Incorporation of a larger training set is hypothesized to increase these classification results. 

Table la: Height/Width Featu re Confustion Matri> 
True Classification 

Height/Width 
Feature 

Classification 

Human Animal Vehicle 
Human 25 4 1 
Animal 4 5 23 
Vehicle 6 3 20 

Table lb: Six-Feature Classification Confusion Matrix 
True Classification 

Six-Feature 
Classification 

Human Animal Vehicle 
Human 26 4 0 
Animal 2 28 2 
Vehicle 1 3 25 

The simple technique of summing the detector 'off states is currently utilized as a classification tool on the 
microcontroller until future data collection events can be performed with the custom array. Detector state events are 
summed and normalized by the highest number of detector events of the sixteen row features, making this technique 
particularly appealing: the "timing" library may be compared against the raw timing features of a subject test case. The 
microcontroller has yielded a real-time 85% classification rate using this feature for a wide variety of humans, vehicles, 
and animals during field data collection events. Classifications are made by comparing the normalized energy features 
along each row with a Naive Bayesian classifier trained against the 'timing' library. These real-time classification 
results are displayed in the confusion matrix of Table 2: 



Table 2: Real-time Row Energy Feature Classification Confusion Matrix 
True Classification 

Real-time Row Energy 
Feature Classification 

Human (30) Animal (32) Vehicle (29) 
Human 25 5 0 
Animal 0 32 0 
Vehicle 1 7 21 

Implementation of the calibration routine, data collection, velocity calculation, profile reconstruction, and classification 
algorithm has been completed on a Rabbit BL4S200 microcontroller. Thus far, the microcontroller has shown promising 
results when coupled to the near-IR profiling sensor array in both vertical and custom detector configurations. 

7.   CONCLUSIONS 

Previous work has shown the feasibility of employing the family of profiling sensors to detect objects of interest for wide 
area surveillance. The focus of this paper is to demonstrate the feasibility of implementing a custom array of random 
detector placements with minimal setup effort. Efforts show that the system is capable of an 85% classification rate 
using mutually exclusive features on a sample data set. Future work involves the collection of additional samples and 
more rigorous testing of the custom array configuration against a more dynamic test subject set. 
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Abstract: The deployment of ubiquitous sensor systems and algorithms has led to many 

challenges, such as matching sensor systems to compatible algorithms which are capable of 

satisfying a task. Compounding the challenges is the lack of the requisite knowledge 

models needed to discover sensors and algorithms and to subsequently integrate their 

capabilities to satisfy a specific task. A novel ontological problem-solving framework has 
been designed to match sensors to compatible algorithms to form synthesized systems, 

which are capable of satisfying a task and then assigning the synthesized systems to 
high-level missions. The approach designed for the ontological problem-solving 

framework has been instantiated in the context of a persistence surveillance prototype 

environment, which includes profiling sensor systems and algorithms to demonstrate 
proof-of-concept principles. Even though the problem-solving approach was instantiated 

with profiling sensor systems and algorithms, the ontological framework may be useful 

with other heterogeneous sensing-system environments. 

Keywords: sensor networks; sensor ontology; profiling sensors; ontological framework 
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1. Introduction 

Dynamically matching sensor systems to algorithms to satisfy a task poses a significant challenge in 

sensor networks. The challenge is made even more difficult because sensor systems and algorithms are 

not typically designed independently, which often limits their reuse in tasks that may not have been 

anticipated when the sensors and algorithms were first deployed. Compounding the challenge is the 

lack of knowledge and data models, which describe sensor and algorithm capabilities, properties, and 

relationships [1-6]. The focus of this paper is on the reasoning process used in a novel ontological 

problem-solving framework, which can be leveraged by software agents on sensor networks, to 

opportunistically match sensor systems to independently designed algorithms to fonn synthesized 

systems capable of satisfying a task. 

1.1. Ontological Problem-Solving Framework 

The ontological problem-solving framework (Figure 1) has the overall goal to discover and match 

sensor systems to compatible algorithms to form a synthesized system, which is capable of satisfying a 

given subtask. The synthesized systems and other algorithms may then be matched to form more 

complex synthesized systems, which may then be assigned to tasks of high-level missions (Figure 2). 
The ontological problem-solving framework will then coordinate all matched and synthesized sensor 

systems and algorithms to complete the missions. The problem-solving approach could have been 

developed with standard database technologies and SQL queries. However, one of the issues that 

makes discovering and matching sensors to algorithms problematic is the lack of knowledge models 

used Id describe those systems. 

Figure 1. Overview of ontological problem-solving framework. 
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Figure 2. Creation of synthesized systems which are then assigned to subtasks of 

high-level missions via the ontological problem-solving framework. 

l;iä*f 

"Synthesized System matched. 
to a Mission 

The knowledge models also need to leverage well-defined semantics in a machine-interpretable 

format so other agents may interact with the described systems. The requirement to opportunistically 

match sensors to algorithms increased the need to. use ontologies (which specify the semantics) and 

rules based on description logic to infer which components may be used to form synthesized systems. 
The knowledge models used by the ontological problem-solving framework may then be leveraged by 

other systems for more complex inference if needed. The ontological problem-solving framework was 

developed using the TopBraid Maestro software by TopQuardrant [7], which uses the web ontology 

language (OWL) [1-6] for knowledge capture, SPARQL [8] for specifying rules, and the TopSpin 

inference engine for interpreting the rules. Other systems, such as Protege, which uses JESS and 

SWRL [1-6], could have also been used to develop the ontological problem-solving framework. The 

main focus of this paper is to detail the reasoning process the ontological problem-solving framework 

uses to match sensor systems to compatible algorithms to form synthesized systems, which are capable 

of satisfying a given task. 

1.2. Matching Sensors to Algorithms 

Engineers often design an algorithm for a specific sensor system. This dependence makes the 

algorithm difficult to use with other sensors opportunistically based on ever-changing persistence 
surveillance goals. If sensors and algorithms are designed independently, then, a problem-solving 

approach must enable the matching of a sensor to a compatible algorithm to achieve a task, such as 

formatting the sensor data for a specific purpose or extracting pixels from an imaging sensor for 

subsequent processing. The composition of matched sensor systems and compatible algorithms to 

achieve a task can be made even more difficult if an algorithm requires multiple data sources 

(Figure 3(a)), or if a chain of multiple sensors and algorithms must be composed to achieve subtasks 

supporting an overall task (Figure 3(b)). The problem-solving approach must describe the relationship 

between the preconditions and post conditions of the algorithms, as well as descriptions of the raw 
data, and possibly features generated by the sensor systems [9-12]. 
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Figure 3. (a) Algorithm, which requires data from two sensor systems, matched to two 

compatible sensor systems, (b) Algorithm matched to a compatible algorithm, which is 

also matched to a compatible sensor system. 
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1.3. Related Work 

There have been several approaches and tools developed to address in part the challenge of 
matching sensors to compatible algorithms. These techniques and tools include, but are not limited to, 

Sensor Fabric [9,13-15], Sensor OASiS [16], Agilla [17-19], Semantic Streams and SONGS [20,21], 

and CIEDETS [22,23]. Other research efforts focused on the development of ontologies that describe 

sensors and their respective capabilities, such as OntoSensor [2-6], Sensor Network Data Ontology [24], 

Sensor and Data Wrapping Ontology [25], Stimulus-Sensor-Observation Ontology [26], Sensor 

Observation and Measurement Ontology [27], Semantic Sensor Network Ontology [28], Disaster 

Management Sensor Ontology [29], and a survey of sensor ontologies [30] are also efforts relevant to 

our work. Other work promotes a logical model to follow while developing a problem-solving 
approach. For example, Sensor Modeling Language (SensorML) [31] describes high-level conceptual 

models using Unified Modeling Language (UML) of sensors, algorithms, and supporting notions to 
facilitate interoperability. The Open Geospatial Consortium (OGC) specify draft interoperability 

interface standards and metadata encodings that integrate sensor systems into information 
infrastructures, such as Observations and Measurements (O&M) [32,33], SensorML [34], Transducer 

Model Language (TML) [35], Sensor Observation Service (SOS) [36], Sensor Planning Service 

(SPS) [37], Sensor Alert Service (SAS) [38], and Web Notification Services (WNS) [39]. Semantic 
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Streams and OntoSensor are two important efforts because of their use of semantics and ontologies. 

Semantic Streams and the follow up SONGS effort were developed by Microsoft to facilitate queries 

to determine capabilities and subsequent tasking of sensors and algorithms. Semantic Streams uses 

event streams, which are collected raw data from sensor systems with meta information attached, and 

inference units, which operate on event streams by creating semantic information about the event 

streams. Queries posted to Semantic Streams are broken down into one or more of the inference units 

(Figure 4). SONGS adds the use of an ontology to describe the inference units. Instead of queries being 

directly mapped to inference units, the approach can infer which inference units may satisfy a given 

query [20,21], OntoSensor is a semantic-web-compatible ontology that captures knowledge about 

sensor systems (Figure 5(a)). OntoSensor can be used to create relationships to other sensor instances 

and to derive properties about sensor systems. Software agents can query the sensor instance data to 

determine the capabilities of connected sensor systems. Once the capabilities of the sensor systems 
have been determined, other agents may task the sensor systems, for example, retrieving humidity data 

for a specified time period (Figure 5(b)) [2-6]. 

Figure 4. Semantic Streams query. 
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Figure 5. (a) Excerpt of the OntoSensor ontology, (b) Problem-solving for discovering and 

tasking sensor systems using OntoSensor. 
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1 A. Profiling Sensor Systems and Algorithms 

To show how aii ontological problem-solving framework can address the challenge of matching 

sensor systems to compatible algorithms for a specific task, a family of unattended ground profiling 

sensors (denoted as PFx, in which PFi, PF2, ..., PFn are different types of profiling sensors) and 

algorithms were deployed in a prototype environment. PFx sensor systems provide unique 

opportunities for dynamic feature extraction through extendable algorithms and subsequent tasking. 

The main purpose of PFx sensors is to capture profiles of objects, which can be subsequently classified 

by algorithms using a variety of techniques, such as Naive Bayes algorithms, neural networks, or 

support vector machines. A common theme of all PFx sensors is that they are intended to be low cost 

and provide a profile that can be reliably classified. There are many different types of PFx sensors, 

which exploit various technologies, including a family of PFx imaging sensors, which use a sparse 

detector array. PFx sensors include, but are not limited to, novel imaging sensors in the visible, near 

infrared, short-wave infrared, mid-wave infrared, and long-wave infrared bands. One of the initial and 

simplest approaches to a PFx sensor was a prototype that used a sparse, vertical array of detectors. One 

configuration was on a vertical pole, as shown in Figure 6(a), while other configurations may include a 

horizontal displacement among the detectors as shown in Figures 7(a) and 8. Other algorithms may 

format or compress the raw sensor data produced by PFx sensors, as shown in Figure 6(b), or generate 

profiles into formats such that other algorithms can subsequently process the data, as shown in 

Figure 7(b). One example is a visualization algorithm, which may generate a silhouette of an object for 
presentation to a human evaluator for classification. Other algorithms that process PFx data may 

classify silhouettes as humans, animals, or vehicles [12,40-46]. 

Figure 6. (a) Near-IR PFx sensor with detectors vertically deployed, (b) Output from an 

algorithm that formats PFx sensor data, (c) Output from an algorithm that produces a 

silhouette from formatted PFx data. 
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Figure 7. (a) PFx sensor with detectors deployed vertically with a horizontal displacement. 

(b) PFx raw data formatted by an algorithm as a profile. 
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Figure 8. (a) PFx sensor with detectors deployed vertically with a specific horizontal 

displacement, (b) PFx sparse detector with random detector displacement, (c) PFx sparse 
detector with only horizontal displacement. 
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The PFx systems, with their various capabilities and relationships, represented a unique opportunity 

for integration onto the ontological problem-solving framework (Figure 9). The following section 

describes in detail the novel ontological problem-solving framework using PFx sensors and algorithms 

to illustrate the matching of sensor systems to independently designed algorithms for a task. The 

problem-solving approach will illustrate how PFx sensors are matched to compatible algorithms for 

pixel extraction, profile generation, visualization, and various other tasks. Even though the PFx sensors 

and algorithms are used for proof-of-principle aspects of the ontological problem-solving framework, 
the same approach may be extended for use by other types of sensors and algorithms to achieve 
different tasks. 
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Figure 9. (a) Representative algorithm types, including classifiers, visualizers, and silhouette 

generators, (b) Representative PFx sensor types, including sparse detectors and imagers. 
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2. Reasoning Process to Match Sensor Systems to Algorithms 

The ontological problem-solving framework uses a reasoning process that leverages knowledge 

management techniques, such as semantic data modeling with ontologies, to address the challenge of 

matching sensors to compatible algorithms to form synthesized systems capable of satisfying a task. 

For this paper, the following definitions are used to describe sensors and algorithms. A sensor is a 

device that produces raw data while an algorithm uses the raw data for further processing These 

definitions are similar to ones put forth by the Open Geospatial Consortium, such as defining sensors 

as processes and defining sensors and algorithms as services in SensorML [34], Of note is that 

low-level algorithms, which may reside on the sensor hardware, are now considered as algorithms, 

which are not part of the physical sensor. The low-level algorithms may be device drivers or software 
to process the raw sensor data into a specific format. Separating the low-level algorithms from the 
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specific sensor systems facilitates a more flexible knowledge representation of the sensor systems and 

algorithms. With these definitions, meta-data, such as sensor and algorithm properties, network 

communications, data formats, etc., must be captured to explicitly represent the relationships among 

sensors and algorithms. The use of models to capture knowledge about sensors and algorithms 

facilitates inference with rules based on description logic. The knowledge models, rules, and inference 

engine may then allow other agents using the reasoning process of the ontological problem-solving 

framework to determine the capabilities of sensors and algorithms to opportunistically discover and 
form synthesized systems capable of satisfying a task. 

2.1. Ontological Relationship Structure 

hi this work, the descriptions of algorithms and sensors are represented in an ontology similar to the 

approach taken with OntoSensor and CIEDETS, which were developed by knowledge engineers with 

input from subject sensor matter experts. Using OntoSensor and CIEDETS ontologies as a baseline for 

the ontological reasoning process, the ontology needed to be extended to allow for the matching of 

sensors to algorithms to form synthesized systems capable of satisfying a task. The baseline ontology 

was extended with the following: (1) a class hierarchy for describing algorithms with descriptive 
properties; (2) additional properties in the sensor class for describing PFx sensors; (3) an additional 

class hierarchy for matching sensors to compatible algorithms; and (4) additional declarative rules. 

The challenge is to match sensor systems to algorithms to form synthesized systems capable of 

satisfying a task and then reusing those systems for other tasks. The baseline ontologies already 

describe sensor systems and various properties of those systems. Since the focus of the ontological 

problem-solving framework was to use a persistence surveillance sensing environment, properties 

were added to the sensor classes that describe PFx sensor systems. Generally these systems have 

properties, such as image resolution, geo-locations of detectors that make up a sparse detector array, 

and network communications. In order for a PFx sensor system to be described and represented by the 
ontology, these properties and others were added to various subclasses of the Sensor class. Algorithms 

were not represented by the baseline ontologies so a complete class hierarchy was added along with 

various attributes, such as data input/output requirements, process capabilities and purposes, 
descriptions of data, and network communications mapped into many different properties. 

If sensor systems and algorithms are matched to perform a task, the ontology must have a way to 

describe this possible interoperability. This combination is not merely just a sensor and a compatible 

algorithm, but a combination of systems that may satisfy a given task. To describe this possible 

combination of systems, the concept of a synthesized system was developed and integrated into the 

ontology. A synthesized system is a possible combination of a sensor and compatible algorithm that 

may satisfy a task. When looking at various types of sensor and algorithm combinations in a 
persistence surveillance environment, generally, a sensor creates raw data of a passing object, a profile 

of the passing object is created from the raw data, and then the profile has a process applied to it, such 

as a classification or visualization. This is a two-step process of first generating a profile and second to 
process this profile. This two-step process can be represented by two different synthesized systems. 

The first synthesized system matches a sensor to an algorithm for the task of generating profiles, while 

the second synthesized system is a matching of the first synthesized system to another algorithm, 
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which has the task of processing the profile for some purpose. To represent the two types of 

synthesized systems in the ontology, two new classes were created that have object type properties that 

establish relationships back to established classes and properties. Figure 10 shows the core ontology for 

matching sensors to compatible algorithms to form synthesized systems, which are capable of satisfying 

a task, which is made up of four main classes: Matched_Sensor_System, Profiling_Sensor_System, 

Sensor and Algorithm. A bottom-up approach will be used to explain the purpose of each of the 

classes, their corresponding relationships, and the following section will describe the rules used to 

query the ontology instance data for possible synthesized systems. 

Figure 10. Core ontology of the ontological problem-solving framework that describes 
the relations of the classes: Matched_Sensor_System, Profiling_Sensor_Systern, Sensor 

and Algorithm. 

Wlatched_Sensor_System 

has_Profiling_Sensor_System 1 

Profil»ng_Sensor_System 

has Sensor 1..' 

has_Algorithm 1 .. * 

lias_Algorithin 1 . 

' .   ■ 

-    '.     ■■■■: ' V,   ■■■>■■■   :.■     '..- 

The Sensor class describes a sensing device, which generates raw data. The Algorithm class 

describes a process, which requires raw sensor data or data provided by another algorithm as input and 

then generates output. The Algorithm class can include, but is not limited to, PFx data formatters, PFx 

classifiers, and PFx visualizers. The Profiling_Sensor_System class is the first synthesized system 

concept that describes a possible combination of a Sensor instance and Algorithm instance, which 

produces a profile of an object in the sensor's field of view. The Sensor and Algorithm instances are 

linked to a Profiling_Sensor_System instance through the two object type properties called has_Sensor 
and has_Algorithm. A Profiling_Sensor_System may have many Algorithm instances processing the 

sensor data. For example, one algorithm may extract specific pixels from a raw image while another 

algorithm generates a profile of the extracted pixels, thus, a chain of algorithms and sensors may be 
matched in a Profiling_Sensor_System. The Matched_Sensor_System class is the second synthesized 

system concept that describes a possible combination of a Profiling_Sensor_System instance and 

Algorithm instance, which produces a result, such as a visualization or classification of the profile. The 
instances Profiling_Sensor_System and Algorithm are linked to a Matched_Sensor_System instance 

through the object type property has_Profiling_Sensor_System and has_Algorithm. A 

Malched_Sensor_Syslem may have many algorithms processing the profile from the 

Profiling_Sensor_System instance. For example, one algorithm may convert the profile to a new 

format, while another algorithm operates on the new profile to generate a classification. 
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Figure 11. Extended class hierarchy of the ontological problem-solving framework for the 

Sensor and Algorithm classes. 
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Figure 12. Excerpt of the properties for representative classes and subclasses for the 

reasoning process in the ontological problem-solving framework. 

has_Profiling_Sensor_System 

Class: Matched_Sensor_System 

Properties: 
has_Profiling_Sensor_System 
has_Algorithm 

has Sensor 

Class: Profiling_Sensor_System 

Properties: 
_has_Sensor 

-t~has_Algorithm 

Class: Sensor 

Properties: 
has Network Communication 

Subclass 

Class: Photo_Conductive 

Properties: 
has_Horizontal_Pixel_Resolution 
has_Vertical_Pixel_Resolution 
has_Horizontal_Detector_Displacement 
has_Vertical_Detector_Displa cement 

has_Algorithm 

has_Algorithm 

Class: Algorithm 

Properties: 
has_Algorithm_Type 
has Network Communication 

Subclass 

Subclass 

Class: Pixel_Extractor 

Properties: 
has_Output_Data_Type 
has_lnput_Horizontal_Resolution 
has_lnput_Vertical_Resolution 

Class: Naive_Bayes_Classifier 

Properties: 
has_Classification_Target 
has_lnput_Data_Type 

Figure 11 shows the class hierarchy of the Sensor and Algorithm classes. Each of these classes may 

have many properties, which are used to describe the instances. Figure 12 shows several of the 

properties used to describe some of the classes within the ontology. For example, the subclass 

Photo jOonductive of the Sensor class has specific properties describing a sensor's pixel resolution: 

has_Horizontal_Pixel_Resolution and has_Vertical_Pixel_Resolution while also inheriting the Sensor 

class property has_Network_Communication. The subclass Pixel _Extr actor of class Algorithm has 
properties describing the resolution of a generated profile: has_Input_Horizontal_Resolution and 

has_Input_Vertical_Resolution while also inheriting the property has_Network_Communication from 

the Algorithm class. Similar in nature is the subclass Naive_Bayes_Classifier which inherits from the 
same Algorithm class but also adds its own unique properties such as has_Classification_Target. The 

Profiling_Sensor_System and Matched_Sensor_System classes also have properties, which are derived 

from the Sensor and Algorithm classes through rules executed during the inference process. These 

object and data type properties are only a few of the many describe in the ontology. 
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2.2. Ontological Rules 

The graph-matching query language SPARQL [8] was used to create declarative rules for the 

ontological problem-solving framework. The SPARQL query language has internal functions that will 

allow for the querying of possible synthesized systems through an inference engine. Once the 

synthesized systems are returned back from the inference engine the systems can be formed into new 

instance data to be leveraged by other systems on the ontological problem-solving framework. The 

rules contain statements that consist of logical constraints among instance data and properties that must 

be true for subsequent instances and properties to be derived and returned as results back to the 

ontology. The rules are made up of two components, referred to as the WHERE and CONSTRUCT 

clauses. The CONSTRUCT (Figure 13(a)) clause is used to return possible object instances and 

properties based on instance data and properties that satisfy the WHERE clause of the SPARQL rule. 
The returned instances may include links to established instances (Figure 13(b,c)), as well as links to 

derived attributes of the returned instances. The WHERE clause contains the logical constraint 

statements that queried existing instances must satisfy before the CONSTRUCT clause returns tire 

possible instances and establishes links to the pre-existing instances and properties (Figure 14). The 

WHERE clause constraint statements include preconditions (properties that must exist), and the other 

descriptive logical constraints, such as FILTER and OPTIONAL statements, that existing queried 
instances must satisfy before possible instances and properties are returned by the CONSTRUCT 

clause. Each rule can be regarded as a Horn clause in that each condition is specified in tire rule via 

logical conjunction (logical AND). If all the properties hold true then the specified instance is returned 

by tire rule. Logical disjunction (i.e., logical OR) can be regarded as a collection of rules that create a 

similar instance, for example, a collection of rules that each bind on different properties which return 

instances of a Profiling_Sensor_System. 

Figure 13. SPARQL CONSTRUCT clause (a) Returned Matched_Sensor_System 

instance, Instance_Matched_Sensor_System, linked to Sensor and Algorithm instances. 

(b) Instance_Sensor and (c) Instance_Algorithm variables instantiated to specific Sensor 

and Algorithm instances in the WHERE clause, thereby establishing a link between a 
matched Sensor instance and an Algorithm instance, (d) Instance diagram. 

CONSTRUCT^ 
Instance Matched Sensor System a Matched Sensor_System (a) 
Instance Matched Sensor System has Sensor ?lnstance Sensor (b) 
Instance 

} 
Matched, Sensor_ _System has_ _Algorithm ?lnstance _Algorithm (c) 

(d) 

f        (a) lnstance_Matched_Sensor_System        ) 

has_Algorithm 
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Figure 14. SPARQL WHERE clause (a) The variable Instance_Sensor instantiated to an 

instance of the class Sensor with the data property (b) has_Type established to the variable 

Type_Sensor. (c) The variable Instance_Algorithm instantiated to an instance of the class 

Algorithm with the data property (d) has_Type established to the variable Type_Algorithm. 

(e) FILTER command comparing Type_Sensor and Type_Algorithm variables for 

compatibility, (f) Instance diagram. 

WHERE{ 
?lnstance Sensor a                 Sensor (a) 
?lnstance Sensor has Type     ?Type Sensor (b) 
?lnstance_Algorithm a                  Algorithm (c) 
?Instance Algorithm has Type      ?Type Algorithm (d) 
FILTER( 

?Type Sensor == 

) 
} 

?Type_Algorithm (e) 

(f) 

c (a) lnstance_Sensor 

has_Type 

X (c) lnstance_Algorithm 

(b) ?Type_Sensor X 
has_Type 

(d) ?Type_Algorithm 

(e) Types are compatible 

3 

D 
The inference engine will process the SPARQL rules for all combinations of pre-existing instances. 

For example, in Figure 14(a,c), these two statements result in the WHERE clause cycling through all 

Sensor and Algorithm instances. The statements in Figure 14(b,d) bind the property has_Type value for 

the instances. The FILTER statement in Figure 14(e) compares the value of has_Type for the Sensor 

and Algorithm instances. If the FILTER statement is satisfied, then, the CONSTRUCT clause is 

subsequently executed to return the specified instance and associated properties. For a simple example, 

the instance data in Figure 15 will be queried with a complete SPARQL rule with the CONSTRUCT 

and WHERE clauses in Figures 13 and 14. The Photo_Conductive sensor instance and PixelJLxtractor 

algorithm instance each have the property has_Type with a value of "Image" (Figure 15(a)). When the 

complete SPARQL rule of Figures 13 and 14 is executed by the inference engine the WHERE clause 

will query for a possible Sensor and Algorithm instances whose property has_Type are the same 
(Figure 15(b)). Once a possible combination has been found {Photo _Conductive and Pixel JLxtr actor 

in this case), the CONSTRUCT clause will be execute by the inference engine to return the possible 
Matched_Sensor_System instance with links back to the original Photo_Conductive and 
PixelJExtractor instances (Figure 15(c)). The returned Matched_Sensor_System instance will then be 

placed into the ontology for further inference and use by other systems. Even though this is a simple 

example with SPARQL, with additional constructs, such as the FILTER or OPTIONAL commands, 

far more complex rules may be built. 
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Figure 15. Instance diagram of a SPARQL query binding on specific instance data and 

returning possible instances (a) Existing Sensor and Algorithm instances that have 

has_Type values equal to "Image" (b) WHERE clause binding and checking the has_Type 

property (c) CONSTRUCT clause returning a possible Matched_Sensor_System with 

established links to the found Sensor and Algorithm instances. 
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The rules in the ontological problem-solving framework bind on all combinations of Sensor and 

Algorithm instances. Their respective properties are then compared in the FILTER statements of the 

WHERE clause to determine which instances need to be returned and when to establish links between 

other instances. Figure 16 through Figure 19 each show one of many rules used to return possible 

Profiling_Sensor_System instances and Matched_Sensor_System instances. The WHERE clause in the 

Profiling_Sensor_System rules in Figures 16 and 17 bind on the properties of Sensor and Algorithm 

instances, such as pixel resolution in Figure 16, number of detectors in Figure 17, and type for both 

Figures 16 and 17. Further, in die WHERE clause, die FILTER statement now compares specific 

Sensor instance properties to die Algorithm instance properties. For example, in Figure 16, the FILTER 

statement compares die network communication type and pixel resolutions. Once a set of instances for 

a Sensor and Algorithm have been queried, which satisfy die constraints of the WHERE clause, the 
CONSTRUCT clause will dien return a Profiling_Sensor_System instance and establish links to die 

compatible Sensor and Algorithm instances. The same process occurs in die WHERE clause in 

Figure 17, but instead of comparing pixel resolutions, detector properties are compared for 
compatibility. The rules for Matched_Sensor_System in Figures 18 and 19 follow a similar logical 

process as the Profiling_Sensor_System rule. The only difference between the rules, other than die 

specific properties of the instances, is in die FILTER statement where an additional statement 

constrains the WHERE clause to a specific type of Algorithm, in this case a "Classifier". The rules 

shown in Figures 14 and 19 botii return Matched_Sensor_System instances, which will classify die 
generated profiles of Profiling_Sensor_System instances. 
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Figure 16. Sample rule and instance diagram. The rule returns an instance of a 

Profiling_Sensor_System if the Algorithm instance and Sensor instance are type compatible 

with respect to the network communication and pixel resolutions properties. 
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Figure 17. Sample Profilin°_Sensor_System rule and instance diagram. The rule returns an 

instance if the Algorithm instance and Sensor instance properties: type, network 

communication, number of detectors, and displacement properties are compatible. 
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Figure 18. Sample Matched_Sensor_Sysiem rule and instance diagram. The rule returns an 

instance if the Profiling_Sensor_System instance and Algorithm instance properties: network 

communication, types, encoding, classification, and pixel resolutions are compatible. 
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Figure 19. Sample Matched_Sensor_System rule and instance diagram, which returns an 

instance if the ProfilingJSensorJSystern instance and Algorithm instance properties: 

network communication, types, encoding, classification, data rows, and columns properties 

are compatible. 
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2.3. Instances of Profiling Sensor Systems and Algorithms on Ontological Problem-Solving Framework 

To illustrate a simple case, Figure 20 shows five sensor instances, including three PFx sensors and 

two conventional imagers, and six algorithms, including two profile generators and four different 

classifiers, with different property specifications and requirements. When the inference cycle begins, 

the rules from Figure 16 through Figure 19 will execute. On the first pass of the inference cycle, five 

new Profiling_Sensor_System instances were created, as shown in Figure 21. The two algorithms 

Profile Image Generator and Profile Matrix Data Generator were matched to multiple sensors based on 

constraints of the algorithms and specifications of the sensors. For example, the Algorithm instance 

Profile Image Generator was matched to the Sensor instance PF5 Conventional Visible Imager because 

the constraint of requiring image data for the Profile Image Generator was satisfied. 

Figure 20. Example instances: (a) Three PFx sensors and two conventional imaging 

sensors, (b) Two profile generators and four classifiers. 

A) Sensor Instance Data B) Algorithm Instance Data 

Sensor: PF, Sparse Detector with 16 NIR detector spaced 12 inches 

Sensor: PF, Sparse Detector with 16 NIR detector spaced 20 inches 

Sensor: PFS Sparse Detector with 8 Thermopile detectors 

Sensor: PF, Conventional Viable Imager with 640 x 480 resolution 

Sensor: PF, Conventional MWIR Imager wih 640 x 480 resolution 

Algorithm: Profile Image Generator 
Input Image 
Output:       Profile Image 

Algorithm: Profile Matrix Data Generator 
Input:    Vertical Colum n Data 
Output: Profile Text Data 

Algorithm: Classifier Human 
Input:    Profile Text Data 

Algorithm: Classifier Human 
Input:    Profile Image 

Algorithm: Classifier Vehicle 
Input:    Profile Image or Text Data 

Algorithm: Classifier Animal 
Input:    Profile Text Data 

Figure 21. Five new Profiling_Sensor_System instances returned, with derived relationships, 

after the first pass of the inference cycle. 

; Profiie_Sensor System: PFvTTiatched Profile Data Generator 

Sensor: PF, Sparse Detector with 16 NIR detector spaced 12 inches Algorithm: Profile Matrix Data Generator 
Input   :   Vertical Column Data 
Output:   Profile Text Data  

SBr ofile^Sensor System: PFv.matched^PTOfile Data GerimWi 

Sensor: PF, Sparse Detector with 16 NIR detector spaced 20 inches Algorithm: Profile Matrix Data Generator 
Input   :   Vertical Column Data 
Output:   Profile Text Data 
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Figure 21. Cont. 

•Profite'-;Sertsor':System:Pfi'matched-Prpfile£)ata'G .  j i 

Sensor: PF, Sparse Detector with 8 Thermopile detectors Algorithm: Profile Matrix Data Generator 
Input  :   Vertical Column Data 
Output:   Profile Text Data  

;Profile_.SensorifSysteiTi: PF* matched Profile J made Generator 

Sensor: PF, Conventional MWIR Imager with 640 x 480 resolution Algorithm: Profile Image Generator 
Input :   Image 
Output:   Profile Image  

Profile,; Sensor_system: PF5 matched Profile Image ^Generator. 

i * i         
| Sensor: PF^ Conventional Visible Imager with 640 x 480 resolution Algorithm: Profile Image Generator 

Input  :   Image 
Output:   Profile Image  

During the second pass of the inference cycle, thirteen new Matched_Sensor_System instances were 

created, as shown in Figure 22. The four different classifiers were matched to multiple 

Profiling_Sensor_System instances based on the type of profile generated and the requirements of the 

classifiers. For example, the Profiling_Sensor_System instance PFi matched Profile Data Generator 

was matched to the Algorithm instance Human Classifier because the constraint of requiring text data 

was satisfied for the Human Classifier. On the third pass of the inference cycle, no new instances were 

created; therefore, the inference cycle halts and returns all matches. 

Figure  22.  Thirteen  new Matched_Sensor_System instances  returned, with  derived 

relationships, after the second pass of the inference cycle. 

Matched_;Sensor_System: PF, Profile Data Generatormatched Classifier Human 

Profile_Sensor_System: PF, matched Profile Data Generator ■ Algorithm: Classifier Human 
Input:   Profile Text Data 

Sensor: PF, Sparse Detector with 16 NIR detector spaced 12 inches Algorithm: Profile Matrix Data Generator 
Input  :   Vertical Column Data 
Output:   Profile Text Data  

Matched Sensor System: PF, Profile Data Generator Hatched ClassifiertVehicle? 

PrDflle_Sensor_S«trtem:-PFirnatchedProriie Data Generator'■ 
Algorithm: Classifier Vehicle 
Input   :   Profile Image or Text Data 

Sensor: PF, Sparse Detector with 16 NIR detector spaced 12 inches Algorithm: Profile Matrix Data Generator 
Input  :   Vertical Column Data 
Output:   Profile Text Data  

MatchecLSenoor_System: PF, Profile Data Generator matched Classifier Animal 

rProfjleJiSencot,iSystera Algorithm: Classifier Animal 
Input:    Profile Text Data 

Sensor: PF, Sparse Detector with 16 NIR detector spaced 12 inches Algorithm: Profile Matrix Data Generator 
Input  :   Vertical Column Data 
Output:   Profile Text Data  
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Figure 22. Cont. 

Matched Sensor_Sysiem: PF, Profile Data Generator matched Classifier Human 

• ProfileiSereorlSystem tSKSfö'tched ProflleDataGenerator Algorithm: Classifier Human 
Input  :   Profile Text Data 

Sensor: PF, Sparse Detector with 16 MR detector spaced 20 inches Algorithm: Profile Matrix Data Generator 
Input  :   Vertical Column Data 
Output:   Profile Text Data  

Matched Sensor System: PF, Profile Data Generator matched Classifier Vehicle 

Profile SensorSystem: PF, matched Profile Data Generator,' Algorithm: Classifier Vehicle 
Input  :   Profile Image or Text Data 

Sensor: PF, Sparse Detector with 16 NIR detector spaced 20 inches Algorithm: Profile Matrix Data Generator 
Input  :   Vertical Column Data 
Output:   Profile Text Data  

Matched_Sensor_System:-PF, Profile Data Generator matched Classifier/Animal 

■ Profile sensorsystem: PF, matched Profile Data Generator > Algorithm: Classifier Animal 
Input   :   Profile Text Data 

Sensor: PF, Sparse Detector with 16 NIR detector spaced 20 inches Algorithm: Profile Matrix Data Generator 
Input  :   Vertical Column Data 
Output:   Profile Text Data  

MatchedjSensor System: PF,Profile Data Generatormatched Classifier Human? 

Profile Sensor .System: PF, matched Profile DataGenerator»' Algorithm: Classifier Human 
Input   :   Profile Text Data 

Sensor: PF, Sparse Detector with 8 Thermopile detectors Algorithm: Profile Matrix Data Generator 
Input :   Vertical Column Data 
Output:   Profile Text Data  

IWatched_Sensorsystem: PF, Profile Data Generator matched Classifier Vehlcle- 

;Rrollle_Sensor_System: PF, matchedProfileData GeneratorI 

/ 

Algorithm: Classifier Vehicle 
Input  :   Profile Image or Text Data 

| Sensor: PF, Sparse Detector with 8 Thermopile detectors Algorithm: Profile Matrix Data Generator 
Input   :   Vertical Column Data 
Output:   Profile Text Data  

Matched Sensor System: PF, Profile Data Generatormatched Classifier Animal 

Prof ile_Sensor System: PF,- matched Profile Data Generator ■ Algorithm: Classifier Animal 
Input   :   Profile Text Data 

Sensor: PF, Sparse Detector with 8 Thermopile detectors Algorithm: Profile Matrix Data Generator 
Input  :   Vertical Column Data 
Output:   Profile Text Data  

Matched Sensor System: PF., Profile Image Generatormatched Classifier Human 

'•ProfHejSensor System: PF, matched Profile Image Generator: Algorithm: Classifier Human 
Input  :   Profile Image  

Sensor: PFi Conventional MWIR Imager with 640 x 480 resolution Algorithm: Profile Image Generator 
Input    :   Image 
Output:     Profile Image  

Matched Sensor. System: PF* Profile Image Generator matched Classifier Vehicle 

Proflle_SensorivSyetem:iRF.-rratchBd Profile Image Generator- 

. . ^_ 
| Sensor: PF, Conventional MWIR Imager with 640 x 480 resolution 

Algorithm: Classifier Vehicle 
Input   Profile Image or Text Data 

Algorithm: Profile Image Generator 
Input   :   Image 
Output:   Profile Image  
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Figure 22. Conl. 

MatchetL5ensor::System: PF profrfe:4nragejeeneratoMratched Classifier ttumarT- 

Algorithm: Classifier Human 
Input   Profile Image  

Sensor: PF« Conventional Visible Imager with 640 x 480 resolution Algorithm: Profile Image Generator 
Input Image 
Output:     Profile Image  

Matched Sensor System: PF, Profile Image Generator matched Classifier Vehicle' 

■; Profile^Sonsor^Syetem: PF, matched «»filei ■Jmage^eherator 

j/_ 
Sensor: PF^ Conventional Visible Imager with 640 x 480 resolution 

Algorithm: Classifier Vehicle 
Input   Profile Image or Text Data 

Algorithm: Profile Image Generator 
Input Image 
Output:     Profile Image  

3. Discussion 

The challenge was to match sensor systems to compatible algorithms to fonn synthesized systems, 

which are capable of satisfying a task and matching those systems to new systems for other tasks. The 

sample rules described in this paper specified relatively simple compatibility constraints among 
sensors and algorithms. However, even with these simple rules, it is noteworthy that the Algorithm 

instances were matched to multiple Sensor and Profiling_Sensor_System instances thus achieving the 

ability to reuse those systems for tasks that may have not been anticipated at the time the sensors and 

algorithms were first deployed. For example, of the five synthesized system concept 

Profiling_Sensor_System instances that were returned, the algorithm Profile Matrix Generator was 

matched to three different sensor systems and the algorithm Profile Image Generator was matched to 

two sensor systems. If not for the matching and return of the Profiling_Sensor_System synthesized 
systems, each one of the matched systems would have had to be individually designed. 

The same results can be seen in the synthesized system Matched_Sensor_System, which reused the 

five Profiling_Sensor_System synthesized systems in thirteen systems with different tasks, such as 

visualizing or classifying the profiles. If the original algorithms represented by the Algorithm instances 

had been designed for specific Sensor instances, the reasoning process of the ontological 

problem-solving framework would not have matched the algorithms to new sensors, thus the sensor 

systems and algorithms would have had to be re-engineered specifically for one another to satisfy a 

task. It is important to note that the synthesized system concepts Profiling_Sensor_System and 

Malched_Sensor_System capture more than just a Sensor matched to an Algorithm. The concept 

synthesized systems, represent new systems which are capable of performing a task. Other rules in the 

ontological problem-solving framework may operate on far more than just two attributes for 

establishing interoperability via matching constraints. The rules may determine that multiple matched 
Profiling_Sensor_System and Malched_Sensor_System instances may be formed into new more 

complex synthesized systems, which may be capable of satisfying more complex tasks, which may 

include statistical analysis on multiple profiles. With the fonnation of the synthesized system by the 

reasoning process, the ontological problem-solving framework may create more complex synthesized 

systems. These more complex systems may then be assigned to subtasks of high-level missions by 

other systems on the network coordinating and executing the mission. Without the use of the ontology, 
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rules, and inference engine these sensors and algorithms would have had to be designed a priori as a 

synthesized system for every new task. However, many of these new tasks are not known at the time 

the systems are deployed; therefore, opportunistically discovering compatible systems and dynamically 

creating matched synthesized systems which are capable of satisfying a new task through inference 

is important. 

Currently, the reasoning process of the ontological problem-solving framework is still in a 

prototype stage so scale-up performance analysis is limited. The problem-solving framework can scale 

to large numbers of sensors and algorithms, but the time to compute all combinations of sensors and 

algorithms is based on the computational complexity of the inference engine, which is influenced in 

part by the reasoning strategy and the expressiveness of the knowledge representation formalism. For 
the performance to increase, the inference engine must check multiple algorithms in parallel or the 

ontological problem-solving framework must invoke the inference engine multiple times in parallel 

with different algorithms and keep track of which instances are being checked to stop redundant 

bindings. Even though the ontological problem-solving framework is still in the prototype stage, 

performance issues and solutions are being studied; however, the logical framework is the priority at 

this stage of research. 

4. Conclusions 

Challenges, such as matching sensors to compatible algorithms that may satisfy a task, will become 

even more difficult with the continued development and deployment of new sensor systems and 

algorithms. Compounding the challenge is the lack of knowledge models used to explicitly capture the 

design and capabilities of sensor systems and algorithms. By leveraging knowledge models, sensor 

systems and algorithms can be matched together in real-time without the need to design those matched 

systems specifically for one another a priori, thus facilitating the use of these assets in new and 

innovative ways not originally anticipated on deployment. To exploit the power of knowledge models, 

algorithms must become less dependent on any given sensor data source, thus sensor systems and 

algorithms must describe their respective attributes and capabilities in a machine-interpretable format 

to allow the reasoning process to infer which systems may be matched together into more complex 

synthesized systems. The reasoning process of the ontological problem-solving framework discussed 

in this paper is the first step to achieving this goal and addressing the challenge of matching systems 
that are capable of satisfying a task. Even though the reasoning process of the ontological 

problem-solving framework was described in the context of profiling sensor systems and algorithms, 

the overall approach may be used for other types of sensor systems and algorithms to form different 

types of synthesized systems capable of satisfying new tasks. 
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Abstract: The lack of knowledge models to represent sensor systems, algorithms, and 

missions makes opportunistically discovering a synthesis of systems and algorithms that 

can satisfy high-level mission specifications unpractical. A novel ontological problem-solving 

framework has been designed that leverages knowledge models describing sensors, 

algorithms, and high-level missions to facilitate automated inference of assigning systems 

to subtasks that may satisfy a given mission specification. To demonstrate the efficacy of the 

ontological problem-solving architecture, a family of persistence surveillance sensor 
systems and algoritiims has been instantiated in a prototype environment to demonstrate the 

assignment of systems to subtasks of high-level missions. 

Keywords: sensor networks; Sensor Ontology; profiling sensors; mission tasking 

1. Introduction 

Dynamically discovering, matching, and integrating sensors and compatible algorithms to form a 

syntliesis of systems that are capable of satisfying subtasks of high-level missions poses a significant 

challenge for network-centric architectures. Compounding the challenge is tine lack of knowledge and 
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data models used to describe the relationships among sensors, algorithms, and missions. Most 

algorithms are designed for specific sensor systems in anticipation of performing a specific task. 

Designing and deploying tightly integrated systems limits their potential reuse for new, unanticipated 

tasks without re-engineering the systems [1-6]. This paper will review the authors' prior work [7], 

which addresses the issue of autonomously matching sensor systems to compatible algorithms. Section 2 

of the paper will review the challenges of assigning the matched systems to subtasks of missions. 

Section 3 will review related work of systems and frameworks that assign systems to missions. The 

remainder of the paper will focus on the authors' extension of their previous work to now include 

assignment of the synthesis of systems to subtasks of missions in the context of a persistence 

surveillance sensing environment. Section 4 discusses the operation of the persistence surveillance 

environment and Sections 5, 6, and 7 discuss the extended ontological problem-solving framework 

laboratory prototype for mission assignment and execution. 

Previous Work by Quails and Russomanno 

Matching sensor systems to compatible algorithms to form a synthesis of systems poses a 

significant challenge to problem-solving frameworks. Frameworks must be able to match the systems 

together and then reuse the same systems in new matches as depicted in Figure 1. hi prior work, Quails 

and Russomanno [7] focused on the reasoning process of matching sensor systems and algorithms to 

form a synthesis of systems capable of satisfying a task. 

Figure 1. Process for matching sensor systems to compatible algorithms to form a synthesis 

of systems capable of satisfying a task. 

Sensor Systems   ||   Sensor Systems Algorithms  I  Algorithms 

Synthesis of Systems 
capable of completing a task 

Synthesis of Systems 
capable of completing a task. 

The prior work by the authors included developing a laboratory prototype ontological 

problem-solving framework that leveraged knowledge engineering techniques to opportunistically 

infer the discovery and matching of sensor systems to compatible algorithms. The knowledge 

engineering techniques included an ontology, rules, and inference engine to autonomously fonn the 

synthesis of systems. Standard database technologies and SQL queries could have been used for the 

prototype development, but one of the main shortcomings limiting the matching of systems together is 

the lack of knowledge models to describe and represent the systems. The knowledge models 
themselves must leverage well-defined semantics in a machine-interpretable format for autonomous 

matching. The use of knowledge models also provides the added benefit of more readily transferring 
the knowledge to other systems as compared to other techniques. 

To autonomously fonn tire synthesis of systems, the prototype framework used ontologies to 

describe properties and relationships among sensor systems, algorithms, and possible synthesis of 

systems. The ontologies have two parts: (i) the class hierarchy for describing relations among different 
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types of sensor systems; and (ii) algorithms and properties for describing specific properties of each 

class. Data-type properties, which may be regarded as attributes, are used to describe sensor system 

and algorithm parameters, such as pixel resolutions, field of view, data format, algorithmic process, 

and network connections. Object-type properties, which may be regarded as associations, were used to 

link specific sensor systems and algorithms together during the inference process for the synthesis of 

systems. With the properties in the ontology, instance data may then be created to represent actual 

sensor systems and algorithms. 

Figure 2 shows a small excerpt of the ontology including four main classes for synthesis: 

Matched_Sensor_System,Proßling_Sensor_System, Sensor, and Algorithm. The Sensor class describes 

a sensing device and the Algorithm class describes an algorithmic process. The process can either 

operate on data generated by the sensing device or data generated by other processes. The 
Profiling_Sensor_System class represents a synthesis of systems that describes possible combinations 

of Sensor and Algorithm instances which produce formatted signal profiles of objects as they pass 

through a sensor system's field of view. The class Matched_Sensor_System describes a synthesized 

system that contains possible combinations of Profiling_Sensor_System, Algorithm, and Sensor 

instances, which produce results, such as visualizations or classifications of the generated signal 

profiles. Not shown is the class hierarchy for the Target class, which contains further subclasses of 

Human, Animal and Vehicle. These subclasses are further refined and include subclasses, such as of 

Bird, Large_Animal, and Bear for Animal and subclasses of Car, LightJTruck, and HeavyJTruck, for 

Vehicle, and so on. Also not shown is a class hierarchy of the ObjectjDfJnterest, which includes 

subclasses and properties describing accessories, such as backpacks and an extensive description of 

weapons, which include bladed, non-bladed weapons, and projectile weapons, such as small and heavy 

arms including pistols, machine guns, and rocket-propelled grenades. Each of the further subclasses 

has its own respective data-type properties describing those classes. Rules in the form of queries with 

conditional actions were developed to be processed by an inference engine to search the instance data 

for possible synthesis of systems. For further information on the development of the ontology in 

Figure 2, class hierarchy, and rule design please refer to Quails and Russomanno [7]. 

Figure 2. Excerpt of the ontology in the ontological problem-solving framework for 
matching sensors to algorithms to form a synthesis of systems. 

Matched_.Sensqr_System'( 
has_Profiling_Sensor_System 1 . 

J^^fmm~X&;/&^:m;:?mk \ ha»_Algorlthm 1 .. * 

~  has_Algorithm 1 .. '.jSJQnMR 

The ontological problem-solving framework with the knowledge engineering techniques discussed 

above was developed with the TopBraid Composer Maestro software environment by TopQuadrant [8]. 

TopBraid uses the Web Ontology Language (OWL) [9] for authoring ontologies; rules with logical 

conditions were developed with SPARQL [10]; and the TopSPIN inference engine was used for 
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processing the SPARQL rules. The authors chose TopBraid Composer Maestro due to their familiarity 

with this platform from other research projects. OWL is based upon one specific description logic 

(DL) with the main difference being the naming nomenclature. For example, in OWL a class is a 

concept in DL, an OWL property is a role in DL, and an OWL object is an individual in DL. Tire rules 

developed by the authors in the ontological problem-solving framework are expressed as SPARQL 

queries with additional constraints on RDF triples, hi addition, some of the rules include actions 

implemented by invoking Java functions via procedural attachment [11]. Other ontological development 

environments could have been used for the prototype development, such as Protege with JESS and 

SWRL [1-7]. Figure 3 shows the overall framework of the ontological problem-solving system. 

Figure 3. Overview of the laboratory prototype ontological problem-solving framework. 

Ontological Problem-Solving Framework 

inference Engine 
Sensor Systems' 

Algorithms 

Algorithms 

2. Assigning Systems to Missions 

The prior prototype ontological problem-solving framework developed by the authors only matched 

sensors and algorithms to form a synthesis of systems [7]. The next logical step was to extend the 
framework to allow for missions to be instantiated on the framework and then autonomously assign the 

synthesis of systems to the missions. Before an extension could be made, the concept of a mission 

must be developed. Knowledge acquired from subject matter experts (SMEs) in the fields of sensor 

system design, algorithm development, and concept of operations (CONOPS) contributed to the 

development of the concept of missions. The authors elicited knowledge from the SMEs to first 

develop missions associated with typical persistence surveillance applications as illustrated in Figure 4. 

Figure 4. Typical missions for persistence surveillance. 

—\ carrying sub-machine gur 

j. classify vehicle with weight greater than 6 tons 

visualize animal carrying backpack 
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The authors and SMEs then analyzed the typical missions to yield a set of specifications that could 

be used to describe the missions. The specifications included a target that must be detected, such as a 

human or vehicle, and a mission task for describing a subtask that describes a process and condition 

which takes place on the target. A process describes what must happen on the detected target, such as 

"classification", "visualization", or "signal profile generation". The process may have ancillary 

conditions, such as target is carrying a "weapon" or "backpack" or even a condition of target has 

"weight greater than six tons". A specification is shown in Figure 5 via an instance diagram. 

Figure 5. Mission decomposed into a specification via an instance diagram. 

icWnegurt ; 

has_target 

has mission task 

Target: human 

Mission Task; classify process with conditions 

has_process 

has condition 

has_object_of_interest 

\ process; classify 

ng sub-mnchinc gun 

fiasjcondrtipnjype:   ' .carrying object 
has_conditton_property: none 

. has^conditionLObJectr.; sub-machine gun 
has condition value: none 

Object ofInterest: sub-machine gun . 

Figure 6. (a) Decompose missions to separate subtasks; (b) Discover sensors and 

compatible algorithms, which can complete subtasks; (c) Subtask assigned to a chain of 

algorithms operating on raw data produced by a sensor; (d) Subtask assigned to an 

algorithm operating on raw sensor data from two different sensors; and (e) Subtask 

assigned to an algorithm operating on raw data produced by a sensor. 

With the high-level missions decomposed into a set of mission specifications, a problem-solving 

approach must then assign matched sensor systems and algorithms to the subtasks which satisfy the 

mission specification as indicated in Figure 6. The problem-solving approach must discover which 

systems can satisfy the given subtasks as illustrated in Figure 6(b). Once systems have been 

discovered, the interoperation of multiple sensors and algorithms must be coordinated to perform a 

subtask as indicated in Figure 6(c-e). To perfonn these operations, the ontological framework must 
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describe relationships among the sensors, algorithms, and missions in terms of how the subtasks relate 

to the mission, relationships among subtasks and compatible sensors and algorithms, and the 

relationships between the sensors and algorithms. Section 5 details how the developed concept of a 

mission was integrated into the authors' previous work. 

3. Related Work 

Various approaches have been designed and engineered to assign sensors and algorithms to 

missions or task specifications, such as Semantic sensor mission assignment [12], Ontological sensor 

mission assignment [13], Knowledge base for sensors to missions [14], GloServ [15], Ontology 

Centric sensor mission assignment [16], Resource management [17], Sensor Mission Matching [18], 
Semantic-aware cooperative agents [19], Query Processing for sensor networks [20], Agilla [21-23], 

Geographic Information System Framework [24,25], Semantic Streams [26,27], and Sensor OASiS [28]. 

Relevant to our work is the development of ontologies that represent and describe sensor systems such 

OntoSensor [2-6], Sensor Network Data Ontology [29], Sensor and Data Wrapping Ontology [30], 

Stimulus-Sensor-Observation Ontology [31], Sensor Observation and Measurement Ontology [32], 

Semantic Sensor Network Ontology [33], and Disaster Management Sensor Ontology [34], Also of 

importance to the authors' work are other examples of relevant sensor ontologies [35], There are many 

logical models and standards to follow and adapt, such as the Sensor Modeling Language 

(SensorML) [36], that leverage the Unified Modeling Language (UML) to conceptualize sensor 

systems and algorithms to facilitate interoperability. Also, the Open Geospatial Consortium (OGC) [37] 

drafts standards that may be used to define metadata encodings and interoperability interface standards 

to facilitate problem-solving frameworks that can integrate sensor systems and algorithms into 

information infrastructures. The OGC includes many standards, such as Observations and 

Measurements (O&M) [38,39], SensorML [40], Transducer Model Language (TML) [41], Sensor 

Observation Service (SOS) [42], Sensor Planning Service (SPS) [43], Sensor Alert Service (SAS) [44], 

and Web Notification Services (WNS) [45]. 

One example system, Agilla [21-23], is a framework used to monitor sensor systems connected to a 

sensor network. Agilla uses protocols with specific conditions that, when met, will perform a specific 
action or actions. For example, the actions and conditions may be to activate other protocols when a 

sensor reports a temperature above a specific threshold. The newly activated protocols may then 

coordinate other sensors to collect data, invoke algorithms for further analysis, or even activate more 

protocols to perform a specific action or actions. Figure 7(a) shows an Agilla network with a fire 

detection protocol on one sensor node. The fire detection protocol has the task of detecting a 

temperature above a specific threshold. Once the temperature threshold is reached, the protocol will 

activate other fire detection protocols on more sensors nodes, Figure 7(b). As the protocols activate on 

the other sensor nodes, the protocols will determine the perimeter of the fire and then send the 

perimeter data to a new protocol, Figure 7(c), which then activates fire services [21-23]. Another 

example system, Geographical Infomiation System Framework [24,25], leverages several different 
frameworks in the overall management of sensor systems and algorithms on a sensor network as 

depicted in Figure 8. The framework includes knowledge models, such as ontologies, for describing 

sensors, algorithms, and tasks. Service-oriented architectures are used to handle communications 
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among all systems, and geographic information system placement logic is used for tasking. The 

different frameworks operating together allow end users or autonomous systems to query the 

framework for available sensor systems and then task the sensor systems to retrieve data or to perform 

specific actions based on sensor data [24,25]. 

Figure 7. (a) Fire detection protocol on a node in an Agilla sensor network that detects a 

fire; (b) Protocol activates other protocols on different nodes to determine the perimeter of 

the fire and then activates other protocols for fire services; and (c) Activation of fire services. 

Message        (c) 

fire Services 

Figure 8. Geographical Information System Framework displaying interconnections among 
the geographic information system, service-oriented architecture, ontologies and end user 

software applications. 
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4. Persistence Surveillance Sensing Environment 

To demonstrate the efficacy of the extended ontological problem-solving framework, a persistence 

surveillance sensing environment was constructed from a family of emulated unattended ground 

profiling sensor systems and algorithms. The profiling sensors provide a means for capturing signals of 

objects which pass through a profiling sensor's field of view. The signals are then passed to algorithms 
which create profiles of the signals, which are then sent to other algorithms for further processing, such 

as object classification or visualization. The profiling sensors have a common theme in that they are 

low cost and provide a signal that can be classified. The profiling sensors are denoted by the 

nomenclature PFx [46]. The PFx sensors may use a variety of sensing bands, including visible, near 

infrared, short-wave infrared, mid-wave infrared, and long-wave infrared bands. They typically share 

a common design principle of using a sparse detector array. 
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Figure 9(a) shows a sparse detector PFx sensor consisting of sixteen near-infrared detectors in a 

vertical deployment with no relative horizontal displacement and a reflector pole. When an object 

passes between the two poles, which is the field of view of the sensors, the resulting signal will be 

recorded. An algorithm then processes the signal by formatting the raw sensor data using run-length 

encoding. The formatted sensor data may be used by other algorithms to visualize the acquired data as 

a silhouette shown in Figure 9(b). Other possible configurations of a vertical near infrared sparse 

detector may include a horizontal displacement, which may be used to determine the velocity of an 

object [46-53]. The chain of creating raw sensor data, generating profiles, and then processing the 

profiles for visualization or classification provides a unique opportunity to show how the prototype 

ontological framework can autonomously assign the PFx sensors and algorithms to the subtasks of 

various missions based on their relationships and capabilities. 

Figure 9. (a) PFx sensor system using sixteen near-infrared detectors deployed vertically 

with no horizontal displacement; and (b) Silhouette generated by an algorithm operating on 

the sensor data. 
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5. Reasoning Process for Assigning Sensor Systems and Algorithms to Missions 

5.1. Problem-Solving Framework for Assigning a Synthesis of Systems to Mission Specifications 

To address the challenge of assigning sensor systems and algorithms to high-level missions the 
previous work by Quails and Russomanno [7] was extended with the concept of a mission developed 

from eliciting knowledge from SMEs. Figure 10 shows the original ontology of the problem 

solving-framework, as seen in Figure 3, extended with an ontology for describing mission specifications. 

The extended ontology is shown here with two additional classes: Mission_Sensor_System in gray, and 

Mission in red. The Mission class has five supporting classes, also in red, to describe mission 

specifications: Target, Mission_Task, ActionJProcess, Action_Condition, and Action_Object_Of_Interest. 

The primary goal of the ontology in the prototype ontological framework is to support the synthesis of 

the Mission_Sensor_System, which is a synthesis of systems assigned to a mission. 
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Figure 10. Extension of the prototype ontological problem-solving framework for 

matching sensor systems to algorithms to form a synthesis of systems that may now be 

assigned to subtasks of missions. 

ha«_M»tchtd_Sensor_System 1 .. 
»»Mission 1..1 

hai_Profiling_Sen»or> 
has_Mission_Task 1 . 

has_Action_Object_OfJnterest 1 .. * 

ActionJ)bJectJ)fJnterest 

A Mission_Sensor_System class describes a possible combination of Matched[Sensor_System 
instances and a Mission instance through the two object type properties has_Matched_Sensor_System 

and has_Mission. A Mission_Sensor_System may have many Matched_Sensor_System instances but 

one only Mission instance. The Mission class describes the various specifications of a mission. The 
Mission class leverages two other classes, Target and Mission_Task, to define mission specifications. 

The Target class describes the object that the mission needs to detect, such as human or animal. The 

MissionJTask class describes the process and condition which must take place on the Target instance. 

To define the process specification, the MissionJTask leverages two other classes: Action_Process and 

ActionJZondition. The ActionJProcess class describes a specification process, such as "classify" or 

"visualize" for the detected Target instance. The Action ^Condition class describes further 

specifications that the Action_Process might require. Last, the class Action_Object_Of_Interest 

describes objects that a Target instance may be associated with, for example, objects that may be 
carried by a human or animal. 

5.2. Ontological Framework Rules 

The original prototype ontological problem-solving framework used SPARQL [10], a graph-matching 

query language to implement the rules to query the instance data and return possible synthesis of 

systems. SPARQL rules can be regarded as Horn clauses with addition logical constraints. The rules 

contain the following two components; CONSTRUCT and WHERE clauses. First, the CONSTRUCT 

clause returns possible object instances, which contain new properties, derived properties, and links to 

other class instances and their corresponding attributes. Second, the WHERE clause contains statements 
that specify constraints. The constraints include the properties that must exist and the logical 

constraints that properties of a class instance must satisfy before the rule will execute. Each of the 
constraints in a single rule are connected via a logical conjunction (logical AND), whereas a collection 

of rules of a common theme are connected via a logical disjunction (logical OR). Once all properties 

and logical constraints of the WHERE clause are satisfied, the corresponding CONSTRUCT clause 

will return the possible object instance or instances. 
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Figure 11. (a) Example SPARQL rule with CONSTRUCT and WHERE clauses, which 

returns a possible Mission_Sensor_System instance; (b) Instance diagram of CONSTRUCT 

clause; and (c) Instance diagram of WHERE clause. 
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Process types are compatible 

New rules were developed for assigning the synthesis of systems to missions, thus returning 

possible MissionJSensorJSystem instances. Figure 11 shows an example SPARQL rule that queries the 

existing instance data and returns a.Mission_Sensor_System instance in the CONSTRUCT clause when 

the properties and logical constraints are satisfied in the WHERE clause. The CONSTRUCT clause 

in Figure 11(a) contains three statements. The first statement declares the object instance 

Instance_Mission_Sensor_System to be of class type MissionJSensorJSystem. The second two 

statements establish links to the possible existing instances through the two properties: has_Mission 

and has_Matched_Sensor_System. To establish these two links, the two properties are linked to two 

variables Instance_Mission and Instance_Matched_Sensor_System, respectively. The WHERE clause 

in Figure 11(b) contains five statements. In the first two statements, the object variable 
Instance_Matched_Sensor_System is instantiated with an instance of class type MatchedJSensorJSystem 

and the variable Matched_Process_Type is instantiated with the value from the data type property 
has_Process_Type from the same MatchedJSensorJSystem instance. In the second two statements, the 

object variable Instance_Mission is instantiated with an instance of class type Mission and the variable 
Mission_Process_Type is instantiated with the value from the data type property has_Process_Type 

from the same Mission instance. The final statement in the WHERE clause contains the FILTER 

command which appears as a simple logical constraint that compares two variables. This 

particular FILTER command compares the two data type variables MatchedJProcessJIype and 

Mission_Process_Type for equality. When the inference engine processes this rule, the CONSTRUCT 

clause will return a possible MissionJSensorJSystem instance with links to a MatchedJSensor JSystem 

instance and links to an assigned Mission instance if the two instances and properties exist and if the 
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two properties are equal in the WHERE clause. Once a Mission_Sensor_System instance has been 

returned by the rules, the ontological framework can then execute the mission by coordinating all 

synthesized systems, sensors, and algorithms assigned to that mission and returning the results of the 

mission via a procedural attachment statement. 

One note of interest is the subsumption qualities of the logical constraint for the FILTER command. 

For example, if the Matched_Process_Type variable is set to a subclass of the Process_Type and the 

Mission_Process_Type variable is set to a superclass of the ProcessJType, the rule will need to return 

true or false depending on a set threshold for the semantic distance between the variables. To set this 

threshold the authors decided to set the mission as a priority. The reason for this selection is based on 

feedback from the SMEs in terms of CONOPs. For example, a mission may be created for a specific 

target but no synthesis of systems can complete that exact mission. Forcing the framework to assign 

systems only to exact matches of missions would severely limit the capabilities of the framework. So 

the authors decided to allow the framework to return possible best matches between a synthesis and a 

mission. For the ontological framework the semantic distance threshold has been set as follows for the 

prototype. There are two basic conditions: if the property of the mission is a subclass of the matched 

system or if the property of the mission is a superclass of the match system. First, if a mission property 

such as has_Action_Object_Of_Interest is set to a value that is a subclass of the same property of the 

matched systems, the framework will assign the matched system to the mission up to the top-level 

superclass that property may have. For example, if the mission has_Action_Object_Of_Interest 

variable is set to pistol, the framework would assign matched systems up to highest class domain of the 

property in this case has_Action_Object_Of_Interest, which is the class Object_Of_Interest. Second, if 

the has_Action_Object_Of_Interest variable of the matched system is set to a value that is a subclass 

of the same property of the mission then an assignment will take place. For example, if the mission 

has_Action_Object_Of_Interest property is set to pistol, the framework would assign matched systems 
that are subclasses of pistol. 

The rules in the ontological problem-solving framework all follow a similar structure outlined in 

Figure 11. The rules bind on all combinations of Mission and Matched_Sensor_System instances and 
return possible Mission_Sensor_System instances in the CONSTRUCT clause when the corresponding 

properties exist and logical constraint statements are met in the WHERE clause. Figures 12 and 13 

each show one of many different kinds of rules that return possible Mission_Sensor_System instances 

and their resulting instance diagrams. These rules bind on properties of the Matched_Sensor_System 

instance that link back to other instances, such as the type of process the system can accomplish, and 

additional properties, such as conditions on the process that may or may not be optional. The rules also 

bind on properties of a Mission instance, which, as previously discussed, include Target, 

Mission_Task, Action_Process, and Action_Condition. Figure 12 shows a rule which binds on a simple 

mission to process a target with no conditions, such as "classify human male". Figure 13 shows a rule 

that binds on more advanced missions that processes a target with conditions, such as "visualize horse 
carrying backpack" or "classify human male with height greater than six feet", respectively. 
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Figure 12. Rule and instance diagram showing how a.Mission_Sensor_System is returned 

for a simple Mission if a Matched_Sensor_System can accomplish the mission based on 

ActionJProcess and Target properties. 
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Figure 13. Rule and instance diagram showing how a.Mission_Sensor_System is returned 

for an advanced Mission if a Matched_Sensor_System can accomplish the mission based on 

ActionJProcess, Action ^Condition, and Target properties. 
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Figure 13. Cont. 
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6. Example of Assigning a Synthesis of Systems to Mission Specifications 

To show how the prototype ontological problem-solving framework operates, a small example has 
been created. Figure 14 shows an overview of all emulated assets instantiated and the resulting 

synthesis of systems and assignment to a mission instance. To begin, the ontological framework was 

instantiated with: (i) one emulated sensor systems Photo ^Conductive (Figure 14(a)); (ii) two 

algorithms, Pixel_Extractor (Figure 14(b)) and Naive BayesjClassifier (Figure 14(c)); and (iii) and 

one mission instance (Figure 14(d)). The following section will detail how the sensor system and 

algorithms are matched together to form a synthesis of systems that are assigned to a mission. Each of 

the instances has many different data-type properties, but for this example only a few relevant 

properties are show in Figure 14. 

The Sensor instance Photo ^Conductive has four properties; has_Horizontal_Pixel_Resolution set 

to 640 pixels, has_Vertical_Pixel_Resolution set to 480 pixels, has_Horizontal_Detector_Displacement, 
and has_Vertical_Detector_Displacement both set to none. The Photo ^Conductive instance represents 

a sensor capable of generating a signal profile of a passing target. The Algorithm instance 

PixelJExtractor has three properties; has_Input_Horizontal_Resolution set to 640 pixels, 

has_Input_Vertical_Resolution set to 480 pixels, and has_Output_Data_Type set to image. The 

Pixel_Extractor instance represents an algorithm capable of loading a raw signal profile data 

in 640 x 480 format and then generating a formatted signal profile into an image format. The second 

Algorithm instance NaiveJBayesJClassifier has three properties: (i) has_Input_Data_Type set to 

image; (ii) has_Classification_Target set to human male; and (iii) and has_Process_Type set to 

classify. The NaiveJBayesjClassifier instance describes a classifier that operates on features of an 

image and then classifies the image as a human male or not a human male. 
The Mission instance represents a mission that requires the detection of human males, i.e., classify 

human male. The Mission instance has two object-type properties, has_Target and has_Mission_Task, 

which link to the Target instance and MissionJTask instance. The Target instance describes a human 

male instance that has many properties, such as has_Name and not shown has_Height, and has_Weight. 
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The instance MissionJTask has two object-type properties has_Action_Process which links to the 

instance ActionJProcess "classify" and the property has_Action_Condition which links to the 

Action_Condition instance "none". The Action_Process instance has many data-type properties, such 

as has_Process_Type, which can have the values classify, profile^generator, converter, and visualizer. 

For this case, the data-type property is set to classify. The Action ^Condition instance 

"none" has three data-type properties, has_Condition_Type, has_Condition_Property, and 

has_Condition_Value, each set to "none" and one object-type property, has_Condition_Object, which 

links to the instance Action_Object_Of_Interest "none". The instance Action_Object_Of_Interest 

"none" is of type Object_Of_Interest which describes a possible object the Target may be holding or 

wearing, but in this example, the mission does not specify if the human male is carrying an object, so 

all values are set to none. 

Figure 14. Mission_Sensor_Syste?n instance diagram showing a linked Mission instance 

"classify human male" matched to a synthesized system capable of satisfying the 
high-level mission, (a) Sensor instance Photo^Conductive; (b) Algorithm instance 

PixelJLxtractor; (c) Algorithm instance Naive _Bayes_Classifier; (d) Mission instance 

"classify human male"; (e) Profiling_Sensor_System instance; (0 Matched_Sensor_System 

instance; and (g) Mission_Sensor_System instance. 

I has_Sensor 

Class: PhotojConawifoe 

(a) 

(b) 

(c) 

Properties; 
iroJHQfäontatPixeijRosdution 
ia£i_Vertical ^Ptxoi^ftoaptirtion 
«i_HojuaritaLDetettor J3t8placemotf' 
la^VortJcaUDetfictof^tiisptaoement 

has_Profiling_Sensor_Syslem 

Class: AciiQTiJOl^QCtJDtJnleTOSi - Properties: . 
-:has„condltlori_Type, none 

/-tiaslconrfitionjirpperty; ■ :. ™>na 
'^hasjconditioitjobiECt:,'; •    none 

■has^condlllon value; none 

Properties: 
has_ActloniPfocess - 
.has ■ActlonjQondition 

has Action Condition 

has_Mission_Task        (d) 

has_Object_Of_lnterest 

With all systems and a mission instantiated on the prototype ontological framework, rules such as 

those in Figures 12 and 13 will process the instance data to form a synthesis of systems and assign the 

synthesis to the mission. The first synthesis of systems to be returned is a Profiling_Sensor_System 
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instance shown in Figure 14(e). The Profiling_Sensor_System instance was returned because the 

properties of Photo_Conductive and PixelJLxtractor matched, i.e., the output pixel resolutions of the 

Photo JZonductive and input pixel resolutions of the PixelJLxtr actor matched to 640 * 480. The 

synthesized Profiling_Sensor_System instance contains two derived object-type properties that link to 

the Sensor instance ~Photo_Conductive and the Algorithm instance Pixel_Extractor, called has_Sensor 

and has_Algorithm. The Profiling_Sensor_System instance represents a synthesis of systems capable 

of formatting a raw signal profile into a formatted "image" profile. 

The next pass of the inference cycle will produce the second synthesis of systems; the 

Matched_Sensor_System instance shown in Figure 14(f). The Matched_Sensor_System instance 

contains the two object-type properties has_Profiling_Sensor_System, which links to the synthesized 
Profiling_Sensor_System instance, and has_Algorithm, which links to the Naive _Bayes_Classifier 

instance. The algorithm NaiveJBayes jClassifier was matched to the Profiling_Sensor_System instance 

because the data-type property has_Output_Data_Type set to "image" matched the data-type property 

has_Input_Data_Type set to "image", respectively. The new Matched_Sensor_System instance 

represents a synthesized system, which generates raw signal data that can then be classified as a human 

male or not a human male. 

On the next inference cycle, the rules return a possible Mission_Sensor_System instance, shown in 

Figure 14(g), which assigns the synthesized system Matched'Sensor__Sy'stem instance to the simple 

Mission instance because of two sets of properties. First, the data-type property 

has_Classification_Target value "human male", which is linked to the Matched_Sensor_System 

through the has_Algorithm object-type property, matches to the data type property has_Name "human 

male" hi the Target instance, which is linked to the instance Mission through the object-type property 

has_Target. Second, the Naive_Bayes_Classifier instance has the data-type property has_Process_Type 

set to the value "classify". The Naive_Bayes_Classifier instance is linked to the Matched_Sensor_ 

System instance through the object-type property has_Algorithm because the data-type property 

has_Process_Type of the instance Action JProcess is set to "classify". Action_Process is linked to the 

instance Mission_Task through the object-type property has_Action_Process, which in turn is linked to 

the Mission instance through the object-type property has_Mission_Task. The synthesized 

Mission_Sensor_System instance links to the synthesized Matched_Sensor_System instance through 
the object-type property has_Matched_Sensor_System and links to the Mission instance through the 

object-type property has_Mission and represent synthesized systems ready to be coordinated to 

complete the mission classify human male. The returned Mission_Sensor_System system is added as 

an instance in the ontology so further inference can leverage the synthesis of systems and mission for 

further complex mission tasking or for actual coordination to execute the mission. Although Figure 14 

shows relatively simple properties, and the rules in Figure 12 and Figure 13 bind on simple 

compatibility constraints, further properties and more complex uses of the SPARQL, FILTER, and 

OPTIONAL commands may allow for more complex synthesized systems to be returned and assigned 
to increasingly sophisticated missions. 
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7. Instantiated Emulated Profiling Sensor Systems and Algorithms 

To show the efficacy of the ontological problem-solving framework, several emulated profiling 

sensor systems and algorithms were instantiated as complete Matched_Sensor_System instances in the 

ontological problem-solving framework as a prototype environment for testing. In the prototype 

environment, nine different Mission instances and six different Matched_Sensor_Sy stem instances 

were instantiated, Figure 15. Each of the various MatchedJSensorJSystem instances contained 

Profiling_Sensor_System instances made up of matched emulated sensor systems and algorithms, with 

some of the emulated systems shared between different Matched_Sensor^System instances. 

Figure 15. Instantiated examples on the ontological framework: (a) Nine different Mission 
instances consisting of detection and classification of targets and visualization 

of targets; and (b) Six different Matched_Sensor_System instances with links to 

Profiling_Sensor_System, Sensor and Algorithm instances matched together to form a 

synthesized system capable of performing a task. 

(a) Mission Instance Data (b) Matched_Sensor_System Instance Data 

Mission: classify human 

Mission: classify human carrying backpack 

Mission: classify human carrying sub-machine gun 

Mission: classify human with height greater than six feet 

Mission: classify animal 

Mission: visualize human canying backpack 

Mission: visualize human carrying sub-machine gun 

Mission: visualize animal carrying weapon 

Mission: visualize human 

Matched: PF, system 
Target: human, animal 
Action Process: classify 
Action Condition no conditions 

Matched: PF2 system 
Target: human 
Action Process: classify 
Action_Condition with object of interest 

Matched: PF, system 
Target: human 
Action Process: classify 
Action_Condition with weapon 

Matched: PF4 system 
Target: any target 
Action Process: classify 
Action_Condition. height above six feet 

Matched: PF6 system 
Target: human 
Action Process: visualize 
Action_Condition with object of interest 

Matched: 
Target: 
Action_Process: 
Action_Condition 

PF6 system 
any target 
visualize 
with weapon 

When the ontological problem-solving framework begins, the inference cycle processes the rules 
similar to those in Figures 12 and 13. When the inference cycles terminate, sixteen new 

Mission_Sensor_System instances were returned as shown in Figure 16. From Figure 16, multiple 

MatchedJSensor_Sy stem instances were matched to a single Mission instance while in some cases a 

single Matched_Sensor_System instance was matched to multiple Mission instances. For example, the 

Mission instance "classify human carrying sub-machine gun" can be completed by two different 
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Matched_Sensor_System instances: "PF2 system" and "PF3 system" because the Action_Process 

"classify" of the Mission matched the Process_Type "classify" of both PFx systems and each of the 

Mission instance Action_Object_Of_Interest "sub-machine gun" matched the Action_Condition of 

both PFx systems. This particular assignment also represents how the authors chose to handle 

subsumption with a semantic distance threshold in that the Action_Condition of both PFx systems 

were not "sub-machine gun" but "object of interest" and "weapon", which are each super classes of 

"sub-machine gun". Assigning matched systems in this way allows the ontological framework to "best 

fit" a mission to a synthesis of systems. Also the MatchedJSensorJSystem instance "PF5 system" can 

complete three different Mission instances: "visualize human carrying backpack", "visualize human 

carrying sub-machine gun", and "visualize human". 

Once the assignments have been completed, i.e., the Mission_Sensor_System instances have been 

returned by the inference engine, the prototype ontological framework selects a single completed 

Mission_Sensor_System instance through a rule and then coordinates all sensor systems and algorithms 

associated with the instance via a procedural attachment within the rule to complete the mission and 

return the results. Once the mission has been completed, the ontological framework will then select the 

next Mission_Sensor_System instance to coordinate, complete, and return the results. Since the 

ontological problem-solving framework is in a laboratory prototype stage, only a single mission is 

completed at a time. Also, if the Mission instance is matched to several Matched_Sensor_Sy stem 

instances, the same mission will be completed for each assignment regardless if it was previously 
completed. Improved systems can be developed that allow for simultaneous mission coordination, 

completion, and avoidance of repeating a mission, but the focus here is on proof-of-concept. 

Figure 16. Sixteen new Mission_Sensor_System instances were returned with derived 

relationships after the inference cycle completed. 

,.Mission_Scnsor_System: PF, system to classify human 

Mission: classify human Matched: PF, system 
Target: human, animal 
Action Process: classify 
Action Condition: no conditions 

iW/ss/on_Sensor_System: PF2 system to classify human 

Mission: classify human Matched: PF2 system 
Target: human 
Action Process: classify 
Action_Condäion with object of interest 

:.Mss(on_Senspr^Syste)j?:-PF^ys' 

Mission: classify human Matched: 
Target: 
Action_Process: 
Action Condition: 

PF, system 
human 
classify 
with weapon 
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Figure 16. Cont. 
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Action_Process:    classify 
Action_Condition: height above six feet 

Mission: classify human carrying backpack Matched: PF2 system 
Target: human 
Action_Process:   classify 
Action_Condition: with object of interest 

Mission: classify human carrying sub-machine gun Matched: PF2 system 
Target: human 
Action_Process:    classify 
Action_Condition: with object of interest 

■I       ■ ■      >   -   

Mission JSensorJSystem: PF3 system to classify" 
ac?.«. 

Mission: classify human carrying sub-machine gun Matched: PF3 system 
Target: human 
Action Process: classify 
Action_Condition: with weapon 

Mission Sensor 

Mission: classify human with height greater than six feet Matched: PF4 system 
Target: any target 
Action_Process: classify 
Action_Condition: height above six feet 

filisBion_Sensor_ßystem:PF, syste 

Mission: classify animal Matched: PF, system 
Target: human, animal 
Action Process: classify 
Action Condition no conditions 

ßHiasmn SansorSystpm 

Mission: classify animal Matched: PF, system 
Target: any target 
Action_Process:    classify 
Action_Condition: height above six feet 
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Figure 16. Cont. 
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Target: 
Action_Process: 
Action_Condition 
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flfrss/orLSefisor_System. 

Mission: visualize human Matched: PFS system 
Target: human 
Action Process: visualize 
Action_Condition with object of interest 

Mission^Sensor_System: PF„ system to visualize human 

Mission: visualize human Matched: PF6 system 
Target: any target 
Action Process: visualize 
Action_Condition: with weapon 

8. Discussion 

The challenge for the ontological problem-solving framework was to assign a synthesis of systems 

to subtasks of mission specifications. Even though the rules described in this paper contain relatively 

simple compatibility constraints among sensors, algorithms, and missions, these rules illustrate an 
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important proof-of-concept. Namely, a problem-solving approach to matching Sensor and Algorithm 

instances to form synthesized Matched_Sensor_System and Profiling_Sensor_System instances which 

are then assigned to high-level Mission instances to form a MissionJSensorJSystem instance that is 

ready to be executed by the ontological framework or other autonomous systems for mission 

completion. It is important to note that multiple Matched_Sensor_System instances were reused and 

assigned to different Mission instances, which the MatchedJSensor_System instances were capable of 

satisfying. For example, the Matched_Sensor_System PF5 instance, which is capable of visualizing a 

human carrying an object, was assigned to three different Mission instances that required the detection 

of "humans" with and without various objects, such as "weapons" or "backpacks". It is important to 

realize that the Mission_Sensor_System is more than just sensors and algorithms assigned to a mission, 

the Mission_Sensor_System is a synthesized system, which is capable of performing the assigned 

subtasks to satisfy the overall mission specification and returning results for further analysis or more 

complex missions. 

Rules in the ontological framework may operate on more than just properties of the various 

instances. For example, more complex rules may determine that certain MissionJSensorJSystem 

instances may be composited together to satisfy more complex mission specifications. Possible 

complex Mission instances may include the detection of multiple targets and the tasking of other 
complex synthesized systems to monitor the targets for a specific time, which could be represented as a 

single Mission_Sensor_System instance. Other rules may even generate new missions or decompose 

missions into specifications for subtask assignment. Without leveraging ontologies, rules, the inference 

engine, and tire concept of synthesized systems, all of the sensors and algorithms would need to be 

configured a priori for the anticipated missions and reconfigured for unanticipated missions. Most 

missions and subtasks are not known at the time of system deployment, therefore, a 

problem-solving approach may opportunistically assign synthesized systems to subtasks of high-level 

missions in real-time, which is an extremely important capability for dynamically changing 

requirements in a particular environment. 

As discussed in the related work, many framework and middleware systems have been researched 

and developed to assign systems to missions. Some of the middleware systems used a priori matching 

of assets to mission tasks, such as Agilla [21-23], which limits the reuse of assets for other tasks 

without new matching occurring a priori. Other systems that use knowledge bases for sensor mission 

assignment [12-19] leveraged ontologies and other techniques for automated sensor mission 

assignment. As stated previously, the reasoning and use of knowledge engineering techniques by the 

authors for the prototype ontological framework is similar to other efforts in some aspects. The work 

described in this paper differs from these other works in that the domain of the missions and assets 
were limited to a persistence surveillance sensing environment. By limiting the domain, the research of 

the prototype ontological problem-solving framework could focus on providing a complete solution 

that not only assigns assets to missions but also includes a coordination system that connects to 
emulated assets and completes the mission. 

Although the priority at this stage of this research is the logical problem-solving framework, 

another important aspect is performance. Performance can be analyzed along several dimensions, 

including scale-up analysis with solution finding, mission operation time, and mission completion 

rates. First, scale-up performance analysis is limited at this point, but the ontological framework can 
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scale to a very large number of instantiated sensors, algorithms and missions, limited only by physical 

memory constraints. The reasoning strategy used by the inference engine, along with the features 

expressible in the knowledge representation language, dictate the overall computational complexity, 

which in turn determines the time for the ontological framework to infer all combinations of sensors, 

algorithms, and missions. Performance can be increased by enabling the inference engine to check 

multiple sensors, algorithms, and missions in parallel or by invoking the inference engine multiple 

times in parallel, while having a strategy in place to eliminate redundant bindings. 

Currently, the prototype ontological framework has been tested with fifty systems not detailed in 

this paper. The ontological framework takes less than two seconds to find all possible combinations, 

which equates to over 500 new combinations after the inference cycle completes. As more sensor 

systems and algorithms are added to the ontological framework, combinatorial explosion becomes an 

issue. Combinatorial explosion may be somewhat mitigated once asset resource control and time 

constraints are taken into account in the rules. First, as the number of systems increase, new systems 

for the ontological framework will need to be researched and developed that limit the number of 

solutions found and to determine the correctness of the proposed solution. Second, mission operation 

time is determined by how the ontological framework or other systems can execute and complete 

missions. To increase performance, the framework needs to operate missions in parallel and prioritize 

matched sensors and algorithms, which are assigned to different missions. Third, the prototype 

ontological framework described in this paper does not take into account competing missions, i.e., 

resource management. New research is focusing on designing systems that provide information to the 

ontological framework for priority of missions, such as time constraints, availability of sensor systems 

and algorithms, i.e., resource control and time difference between collection of data and mission time 

completion. Other mechanisms will need to be established that prevent a mission from never 

completing. For example, a mission may be to classify humans, but humans may never be detected 

thus locking the resources for that mission indefinitely. Placing time constraints on active missions 

may prevent the never ending mission. 

9. Conclusions 

Although the paper only shows PFx sensors, algorithms, and missions related to operation of those 

sensors and algorithms instantiated on the ontological framework, the principles and techniques that 

have been demonstrated may be appropriate for other types of sensors, algorithms, or missions. 
Development and deployment of new sensor systems and algorithms will continue to create 

challenges, such as discovering appropriate sensor systems and algorithms to satisfy tasks which may 

then be assigned to subtasks of mission specifications. The lack of explicit knowledge models used to 

describe the capabilities of sensor systems and algorithms and the specifications on high-level missions 

compounds the challenge even further. To allow the flexibility of assigning systems to unanticipated 

missions, the framework must leverage knowledge models, such as ontologies, rules, and inference 

engines, in a machine-interpretable format to perform automated synthesis and assignment of sensor 
systems and algorithms. The use of ontologies facilitates inference with rules allowing the prototype 
ontological problem-solving framework to autonomously reason about how a synthesis of systems may 

be fonned and then assigned to missions. New research for the prototype is focusing on addressing the 
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issues raised in the discussion section, such as combinatorial explosion, resource constraints, mission 

completion time, and other areas. The problem-solving approach developed in this paper for the 

laboratory prototype ontological framework is the first step towards achieving reuse of systems 

without an a priori configuration, flexible assignment of synthesized systems to mission subtasks 

through automated inference, and addressing further issues affecting a frameworks ability to 

autonomously coordinate assets. 
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ABSTRACT 
Remote detection of harmful intent is necessary for effective and appropriate countermeasures and will reduce 
risks to life and property. Trained human observers and sensor systems typically use facial expressions, gaits, 
gestures, perspiration, and a number of other observable characteristics as possible indicators of harmful intent 
with mixed results. It is proposed that responses of human subjects to external stimuli can be used as additional 
indicators of harmful intent in surveillance contexts. A variety of alerting stimuli, possible responses to the 
stimuli, features to be sensed by sensors, and the utility of these sensed features as indicators of harmful intent 
are discussed in this paper. An ontology-based data.-to-decision framework for assessing hiunan intent, which 
would leverage the formal representations of the alerting stimuli, as well as the variety of possible responses, is 
proposed in the context of Semantic Web infrastructure. 

Keywords: Intent Detection, Data-to-Decision Framework, Surveillance, Hiunan Behavior, Ontology. 

1. INTRODUCTION 

The ability to remotely detect the covert intent of humans is very useful from the perspective of security. 
According to a report by the Army Research Laboratory,1 such a capability will greatly mitigate the risks 
involved in military surveillance, especially in hostile environments, and enable the adoption of appropriate and 
timely countermeasures to tlueatening situations. These capabilities and benefits can extend to non-military 
security applications as well, including intelligent border-monitoring applications. Video footage from monitored 
areas, ranging from border checkpoints to shopping malls, can be used in a preventive capacity in addition to its 
current primary usage for post-incident investigations. Automated intent detection from video surveillance, as 
well as from the percepts sensed from other sensors will potentially neutralize the deleterious effects of human 
observer fatigue. Research studies show even the attention of well-trained security guards drops to unacceptable 
levels after only 20 minutes of continuously viewing and analyzing video footage.2 

A number of approaches to hiunan intent detection, using trained human observers, as well as tracking 
methods in video cameras, have been adopted at various monitored areas, such as airports and border checkpoints 
with mixed success. These include scrutinizing facial expressions, gaits, movements, and gestures.3,4 At a basic 
level, intent detection approaches involve modeling and classification of tracked human movement or expression 
with certain rules. More advanced approaches involve the use of thermal and infrared imagers that measure 
pulse and heart rates, or even display patterns of blood circulation and body temperature. The effectiveness of 
these teclmiques as indicators of hostile intent is not well established at this time.5'6 

This paper investigates the use of a novel data-to-decision framework for intent detection, using the responses 
of human subjects to an alerting stimulus. The responses of the subjects to the stimulus can be used as 
indicators of harmful intent.  Consider the data fusion model proposed by the Joint Directors of Laboratories 
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(JDL),7 augmented with a knowledge management component in Figure l.8 These six fusion levels cover both 
"automated" and "human in the loop" processing of data and knowledge. The model can be used to frame the 
concept of autonomous algorithms and human users contributing to an evolving solution state in which fused 
information may enable the identification and assessment of strategies and tactics for countermtelhgence8-10 
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Impact 
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Figure 1. Six levels of the data fusion model augmented with a data and knowledge management system. 

2. SURVEILLANCE AND INTENT DETECTION 

Stimuli can be synthesized and introduced into a sensed environment to assess the reaction of humans. Depending 
of the background context and environment, a human's reaction to the stimuli may be supportive information 
that can incrementally contribute to an evolving hypothesis about the intent of the humans. Audible stimuli, 
such as a recorded human voice reading out a message, or a sound such as the breaking of a twig, or the cocking 
of a bolt-action rifle, may be used. Flashing lights, a swiveling lamp turning on and tracking the movement of 
the subject(s), or even an increase in illumination intensity are examples of visual stimuli, which may be more 
effective at night. The choice of stimulus may be context dependent as well. For example, some stimuli, such 
as the sound of a rifle being chambered may be more appropriate in a combat zone. The devices that generate 
stimuli are generally inexpensive and easily camouflaged. However, they may be effective in altering the behavior 
of the human subjects in many cases, eliciting a variety of responses from individuals and groups, which may be 
useful in assessing then intent. Let us examine each of the potential stimuli separately. 

2.1 Alert Stimuli and Responses of Individuals 

Suicide bombers are an extreme example of the threat posed by individuals in military installations, airports, 
and other public places. Every year, security officers trained in profiling passengers on the basis of their general 
behavior and body language detain thousands of passengers for further screening and questioning at airports 
around the U.S. and abroad. While arrests and detainment are relatively rare, most of these arrests are for prior 
convictions that are revealed by background checks and not because of any identified hostile intent.5 Similarly, 
security personnel maiming secured areas, such as military bases around the world, look for telltale, signs in 
human subjects. 

Given the high stakes for suicide bombers and the high levels of anxiety, alert stimuli may be particularly 
helpful in exposing their intentions. Consider the possible responses of a suicide bomber to an alert message or 
to flashing lights at night, which may be triggered manually by personnel who observe suspicious behavior. A 
trained terrorist willing to die for his cause is very unlikely to turn away; instead the response will more likely 
be a panic stricken rush towards a crowded area in a public space or at least an area manned by security or 
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defense personnel at a border checkpoint or barrier. In such cases, additional sensors, such as metal detectors and 
infrared scanners may be deployed to confirm the tlireat and suitable preventive measures taken to effectively 
neutralize the threat or at least minimize the destruction to life and property. 

Security personnel are also interested in apprehending people attempting to smuggle contraband and pro- 
lübited items into the country at international airports, seaports, and borders. Alerting stimuli triggered by 
suspicious behavior may prompt a smuggler at an airport to attempt to lüde or leave the passenger concourse 
altogether for the aircraft parking areas and taxi ways through the secured entry points and ramps. The miscreant 
can be easily apprehended in such cases. At seaports and at borders, the decision of a suspect to alter course and 
try an alternate route to evade authorities is a reliable indicator of intention. At land borders, suspects could 
turn back to the country of origin but still be apprehended by the authorities on their own territory. 

Now consider the effect of an alert stimulus on a false positive, a regular1 benign human subject. Radical 
changes in behavior such as trying to escape or evade authorities or breaking into a frenzied rush are typically 
uncommon responses. In most cases, such subjects may stop or adopt similar cooperative behavior patterns. 
Passengers at an airport rushing to catch a flight or hassled by delays and long or inconvenient travel schedules 
are more likely to adopt a hostile or defensive attitude in response, but again they are very unlikely to adopt the 
behavioral patterns of terrorists or felons. At a military checkpoint or barrier, alerting stimuli may inconvenience 
or irritate a falsely identified subject but again, will not inconvenience the people at large. 

Note how alerting stimuli in these examples can positively identify a human subject with malicious or hostile 
intent from among a crowd even before they approach the security checkpoints. Valuable moments of time, 
which may mean the difference between destruction and prevention, may be gained by this approach. Inconve- 
nience to the public at large will be minimized; sometimes they may even cooperate in the apprehension of a 
suspect on the move before the arrival of security personnel. It should be noted because of cost considerations, 
sophisticated sensors may not be widely deployed in all public spaces except at places of vital importance such 
as airports, government buildings, and famous monuments and landmarks. In such cases, alert stimuli generated 
by inexpensive devices alone can be very effective in identifying potential threats to public security. 

Across international borders (e.g., U.S.-Canada and U.S.-Mexico) where much of the length of the border 
is strewn ("dusted") with vibration sensors or profiling sensors, strategically positioned devices that generate 
alert stimuli may prompt individuals to alter then- course and redirect them to selective locations (Section 2.3) 
where more capable and well-camouflaged sensors, such as metal detectors and infrared cameras are placed. 
Whether the subjects have benign or malignant intentions, such subjects can be better identified and intercepted 
as necessary. Course altering behavior can also help in determining the intent of groups of people as discussed 
in the next subsection. 

2.2 Alert Stimuli and Responses in Groups of People 

Groups of people driven by hostile intent at a militarized zone may be harder- to identify if they use very effective 
concealment techniques. Consider a protesting group of people just outside a military base or at a checkpoint 
that includes a well-concealed gunman or someone brandishing a Molotov cocktail. Such threats axe very hard 
to identify by conventional surveillance techniques. Alerting stimuli may not be of much use in such situations, 
except in case someone panics. 

At international borders, a variety of stimuli may be used to identify telltale behavioral patterns. A simple 
audible alert or flashing lights may cause harmless subjects, villagers walking along the border on their way home 
for example, to call out to identify themselves or stop or similar cooperative behavior. Subjects attempting an 
illegal crossing may attempt to hide, dränge course, or damage and destroy any equipment that they can identify. 
Occasionally, they may even go back the way they came. Diversions from the course may have the desired effect 
of concentrating a large number' of people into a small area (Section 2.3) where more advanced sensing techniques 
may be deployed to determine if they are wearing uniforms, armed, or canying contraband. Deployed advanced 
sensors may be activated opportunistically in such cases to refine the situation assessment. 

In a border surveillance context, additional stimuli could be used apart from the auditory and visual stimuli. 
Trip wires could be raised to cause some members of a group to fall. Tliis may cause a variety of sounds to be 
detected by a sensitive microphone, such as metallic sounds if the group is carrying guns. An arm in a vertical 



position could be caused to drop. Such events can cause predictable responses in the group from which intent 
may be putatively assessed. An armed group advancing towards a checkpoint with the intention to attack may 
freeze, scan the area, and wait for other sounds. Or they may decide to press on full speed ahead to try and 
storm the outpost. In either case, more sensors may be activated to study the group. If additional sensed 
data confirms the armed status of the group, more aggressive countermeasures can be employed. The choice of 
stimulus may also decide the type of response from the group. The sound of a rifle being chambered may elicit 
a more aggressive response from an armed group than the sound of a breaking twig or a birdcall; for example, 
freeze and scan in the latter case as opposed to war cries and charge in the former. 

2.3 Constrained Environments for Border Surveillance 

Simple devices that alert human subjects can be used in a landscaped environment, effectively diverting human 
subjects into a small area where state-of-the-art sensing devices have been deployed. For example, consider the 
harsh desert conditions typical of much of the U.S.-Mexico border. Possible route choices for human subjects 
at the border can be artificially constrained by a synthesized lake for example, or by the cultivation or trans- 
plantation of thorny desert plants, such as cacti that restrict movement through the plants. At night, effective 
use of lighting can be used to similar effect. The area can be landscaped with lakes, thorny plants, and other 
artifacts such that human subjects are forced to move towards constrained areas where more advanced sensing 
devices have been deployed. In the example of the artificial lake, thirsty human subjects in a desert environment 
are very likely to be drawn to the water. Access to the water itself can be restricted to one (or a few more) 
points where advanced sensors are deployed. These ideas can leverage existing work in the use of landscaping for 
ciime prevention and surveillance from a criminal justice perspective.11 Such ideas will also require collaborative 
work with researchers in behavioral and cognitive science, as well as with experts in ecology and environmental 
science. 

3. FORMALIZING CONTEXTS, ALERT STIMULI, RESPONSES, AND INTENTS 

The previous section discussed the possible contexts in which alerting stimuli could be apphed to determine the 
intent of human subjects, the variety of stimuli that could be used, the possible responses to these stimuli, and 
how these could be used as indicators of intent. The purpose of the next section is to begin the presentation of a 
formal approach to denning these contexts, stimuli, responses, and intents towards inclusion of these definitions 
hi a Semantic Web ontology.12 

3.1 An Ontology for Response-based Intent Detection 

Semantic Web ontologies contain formal, logic-based definitions of concepts and inter-concept relationships that 
are pertinent to a knowledge domain. Each of the defined concepts and relationships is assigned a specific Uniform 
Resource Identifier (URI), wldch is an accessible location on the Web. The ontology containing the definitions 
has a unique Web address and each of the defined concepts and relations corresponds to a specific subsection of 
this address. An ontology for intent detection will include definitions of contexts, stimuli, behavioral responses, 
and intents. Each of these concepts is discussed in the following subsections. 

3.1.1 Contexts 

Response-based intent detection can be used in many contexts. Contexts are defined as combinations of locations 
and times. Times are simple attributes that can take on a value from a set of values including wartime and 
peacetime. Locations include international land and sea borders, airports, military bases, seaports, government 
buildings, national monuments, famous landmarks, and other areas of vital importance. Figure 2 shows a prelim- 
inary definition of the Application_ Context concept using constructs from the Web Ontology Language (OWL). 
Note OWL concepts are the same as UML classes. These words, concepts and classes, are used interchangeably 
m this paper. 



<owl:Class rdf:about="#Application_Context"> 
<rdfs:subClassOf> 

<owl:intersectionOf rdf:parseType="Collection"> 
<owl: Restriction 

<owl:onProperty rdf:resource="#inTime"/> 
<owl:cardinality rdf:datatype="&xsd;NonNegativeInteger"> 1 </owl:cardinality> 

</owl:Restriction> 
<owl:Restriction 
<owl:onProperty rdf:resource="#atLocation"/> 
<owl:cardinality rdf:datatype="&xsd;NonNegativeInteger"> 1 </owl:cardinality> 

</owl:Restriction> 
</owl:intersectionOf> 

</rdfs:subClassOf> 
</ovl:Class> 

Figure 2. OWL definition for Application_ Context 

3.1.2 Alert stimuli 

Alert, stimuli axe broadly categorized into auditory, visual, and others. From the discussion in Section 2, each of 
these categories may be denned as sub-concepts of the Stimulus concept or they may be defined as enumerated 
values. Given that several types of auditory and visual stimuli can be used, it makes sense to define them as 
full-fledged sub-concepts of the Stimulus concept as shown in Figure 3. The sub-concepts can be instantiated by 
stimuli, such as flashing lights {Visual_Stimulus instance) and a trip wire being raised (Others instance). 

Alert_Stimulus 

"5 
Auditory_Stimulus Visual_Stimulus Others 

Figure 3. Alert_ stimulus class hierarchy. 

3.1.3 Responses 

Possible responses of human targets to alert stimuli include freezing, calling out, charging, war cries, panicking, 
changing course of movement, hiding, rushing forward, going back the way they came, and attempting to 
sabotage or destroy surveillance equipment. These actions can all be instances of the Response concept in an 
OWL ontology. 

3.1.4 Intents 

Intents can be classified as hostile or non-hostile at a. very high level. Assessment of intent is dependent upon the 
alert stimulus that was incident upon the human subject(s), the context (the location and time) when it was used, 
and the recorded behavioral responsc(s) of the subjcct(s) to the stimulus. This can be defined as a production 
rule where each of the parameters that influence the assessed intent is an antecedent while the assessed intent is 
the consequent. Note the intent can also be defined as a restriction class (named Assessed_Intent) in OWL with 
three essential associations with the Application_ Context, Alert._Stimulus, and Response concepts as shown in 
Figure 4. Figure 5 shows an example of a production rule conforming to these associations shown in Figure 4. 



HostileJnUnt Non-Hoslile_lnUnt 
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Figure 4. Assessed_ intent class. 

instanceOf(?intent, Assessed.Intent), responseForIntent(?charge,?intent), 
stimulusForIntent(?sound,?intent), contextForIntent(?appCtx, ?intent), 
instanceOf(?appCtx, Application_Context), inTime(?appCtx, "War")i 
atLocation(?appCtx, "Border"), instanceOf(?sound, Auditory_Stimulus), 
auditoryStimulusType(?sound,"rifle_loaded"), instanceOf(?charge, Response), 
responseType(?charge, "charge") 

instanceOf(?intent, Hostile_Intent). 

Figure 5. Production rule for inferring Assessed_Intent 

Note each of the attributes in the classes Response and Alert_ Stimulus can be defined as OWL datatype 
properties, which take enumerated suing values. However, each of these values can be reified into classes of then- 
own in the long term following best practices recommendations. 

3.2 Automation of Intent Detection 

The development of an ontology, with concepts described in the last section, is central to the development of 
a data-to-decision framework to automatically provide an assessment of the threat posed by human subject(s) 
under surveillance. The framework would likely use production rules implemented in Jess13 or other similar 
rule-based engines to provide a numerical estimate of the likelihood of threat from the human subject (s) under 
surveillance. In the interest of reusability and interoperability, we propose the use of Semantic Web14 compatible 
probabilistic reasoning engines, such as Pronto,10 an implementation of Semantic Web compatible uncertainty 
reasoning.16 
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4. RELATED WORK AND CONCLUSIONS 

The idea of using human behavior to identify hostile intent and deception is a very old one. A system capable 
of detecting intent from video surveillance footage was patented in 1997.1T Cohen et al.'1 have proposed an 
intent detection system using Point-light Walker (PLW) displays of human motion. This work leverages previous 
research into identifying the emotional state of humans using motion cues.18 Tracked human movement is 
compared with recorded data from actors in a simulated environment as proposed by Frank et al.19 

Alerting stimuli may significantly impact the efforts to remotely assess the intent of human subjects. In the 
examples discussed in this paper (Section 2), alert stimuli of different kinds are capable of eliciting predictable 
responses from individuals and groups under surveillance, all of which may not be possible with conventional 
sensing methodologies. They have the desirable effect of necessitating the use of more advanced and power 
consuming sensing techniques only when required and only to refine the assessment of tin-eat. In addition, alert 
stimuli can potentially evoke telltale responses from suspects well in advance of their approaching a sensitive 
checkpoint or barrier, improving the prospects of effective countermeasures and threat neutralization. Inconve- 
niences caused to the general public at large by the current practice of security checkpoint profiling will also be 
significantly reduced. 

A data-to-decision framework for estimating the likelihood of hostile intent in human subject(s) based upon 
the responses of the subjects to an alerting stimulus has been outlined. A number of application contexts, 
alerting stimuli, and possible responses to the stimuli have been discussed and defined in a formal Semantic 
Web ontology. This ontology is necessary to automate the process of threat identification and assessment in the 
future. 
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Abstract. In the absence of detector arrays, a single pixel coupled with an 
image plane coded aperture has been shown to be a practical solution to 
imaging problems in the terahertz and sub-millimeter wave domains. The 
authors demonstrate two laboratory, real-time, two-dimensional, sub- 
millimeter wave imagers that are based on an image plane coded aper- 
ture. These active imaging systems consist of a heterodyne source and 
receiver pair, image forming optics, a coded aperture, data acquisition 
hardware, and image reconstruction software. In one of the configurations, 
the target is measured in transmission, while in the other it is measured in 
reflection. In both configurations, images of the targets are formed on the 
coded aperture, and linear measurements of the image are acquired as 
the aperture patterns change. Once a sufficient number of linearly inde- 
pendent measurements are obtained, the image is reconstructed by sol- 
ving a system of linear equations that is generated from the aperture 
patterns and the corresponding measurements. The authors show that 
for image sizes envisioned for many current applications, this image 
reconstruction technique is computationally efficient and can be imple- 
mented in real time. Measurements are collected with these systems, 
and the reconstruction results are presented and discussed. 02012 society 
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1 Introduction 

The interest in terahertz imaging is motivated by the ability 
of terahertz (THz) frequencies to penetrate most manmade 
materials, particularly clothing.1"3 Additionally, many harm- 
ful chemicals and explosives display absorption lines that 
make them identifiable by THz.4,5 These characteristics of 
THz make it attractive for security applications. Unfortu- 
nately, THz imaging is one of the last electromagnetic ima- 
ging modalities for which focal plane arrays are still 
impractical and/or too costly to be used in practical security 
applications. An intermediate solution has been the develop- 
ment of scanning systems. These, however, have their own 
cost, weight, power, and frame rate limitations. 

Our interest is focused in the part of the THz spectrum 
between 300 GHz and 3 THz, which is referred as the 
sub-millimeter wave region. This interest is motivated by 
the availability of mature single detector technologies at 
these frequencies. Both active and passive imaging config- 
urations at these frequencies have been successfully demon- 
strated, and now the new frontier in sub-millimeter wave 
imaging is faster image frame rate and smaller size, weight, 
power consumption, and cost. Passive systems that operate at 
close to real time require cooled detectors and tend to have 
very large form factors.6,7 Images from these systems are 
similar to infrared images and provide temperature differ- 
ence/contrast information. On the other hand, the images 
acquired with active imagers, that are usually coherent, 
have very high dynamic range and suffer from the specular 
reflections and clutter in the scene. However, this phenom- 
enology can be mitigated by using the imager in radar mode 
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as demonstrated by Cooper.8 An advantage of active systems 
is that they operate at room temperature and their form factor 
is usually limited by the optical aperture rather than the 
detector and source modules. This makes active systems 
attractive for applications that require the imager to be 
portable and operate at stand off ranges. 

Awaiting the development of practical and inexpensive 
focal plane arrays for sub-millimeter wave imaging, other 
alternatives that exploit the maturity of the single pixel detec- 
tor have been explored. In particular, we have focused our 
efforts on spatial light modulators (SLM) for sub-millimeter 
waves and their application as image plane coded apertures. '•' ° 
Spatial light modulators work in reflection mode or in trans- 
mission mode. Perhaps the most well-known reflective SLM is 
the Texas Instruments digital micro-mirror device (DMD) 
known for its use in the Rice University single pixel camera,1' 
or in most modern day projectors. A reflective SLM for 
sub-millimeter waves has been proposed by Lukkanen12 

and entails using an electronically controlled reflect-array 
that can be used as a beam steerer. However, this work is in 
its design phase. 

An example of transmissive SLM is the liquid crystal 
optical modulators common in display applications. There 
have been some efforts to use metamaterials to develop an 
electronically controlled transmissive SLMlj for THz, but 
the modulation depth of that device did not exceed 40%, 
with a minimum transmission coefficient of 0.3 and maxi- 
mum of 0.7. Higher modulation depths are preferred for 
most sub-millimeter wave imaging applications. Another 
approach that is being investigated for transmissive THz 
modulators is the use of microelectromechanical systems 
(MEMS)   reconfigurable   sub-wavelength   metallic   slits. 
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Although this work is promising, but so far only analysis 
and small scale devices for proof of concept have been 
demonstrated.14'15 

The lack of high power illumination sources in the sub- 
millimeter wave regime and the atmospheric absorption 
require special consideration for the efficiency of SLMs 
for sub-millimeter waves. Practical implementations of 
optical systems for SLMs where the image plane is being 
modulated favor transmission mode devices. The energy 
that passes through the SLM transmission mode device 
can be collected and channeled to the detector, whereas 
the energy reflected by the SLM reflection mode device 
will be diffracted away from the detector. 

We have developed a mechanically scanned SLM for sub- 
millimeter waves that serves as an image plane coded aperture. 
Although a mechanically scanned system, our device has low 
mechanical complexity, provides high modulation levels and 
high scanning rates, and has low cost At the core of this 
device is a rotating disk with holes that spins at a constant 
speed. The image is formed on one portion of the disk and 
is transmitted through the holes onto the single pixel receiver. 
Linear measurements are made on the image as the disk 
rotates. An image is reconstructed using the knowledge of 
the hole patterns and the measured signal from the receiver. 

We have previously presented the electromagnetic analy- 
sis and design of this device as well as a working example of 
a line image plane coded aperture as part of a line imager.9,10 

In this paper we describe and demonstrate a two-dimensional 
version of the device that is used to form 64 x 64 pixel 
sub-millimeter wave images. Sub-millimeter wave images 
are formed in transmission mode and in stand-off reflection 
mode. In transmission mode, a transmissive target is pro- 
jected onto the device. In stand-off mode, the target is placed 
10 m away from the imager and an image of it is formed on 
the device through an optical system. The next section intro- 
duces the image plane coded aperture device and the math- 
ematical formulation of the forward imaging problem with 
this coded aperture. In Sec. 3, we present an image recon- 
struction method and discuss the effect of the reconstruction 
parameters on the relative reconstruction error of the solu- 
tion. We present results from simulations for two imaging 
configurations of interest. In Sec. 4 we describe the imple- 
mentation of the image plane coded aperture and the imaging 
setups. Images formed using the device are presented and 
discussed in Sec. 5. Based on the discussion in Sec. 5 
and the results from the simulations presented in Sec. 3, 
we conclude with some recommendations for future work. 

2 Two-Dimensional Image Plane Coded Aperture 
A conceptual sketch of the image plane coded aperture is 
shown in Fig. 1. The device is placed in the image plane 
of the imager, and an image is formed over the imaging win- 
dow. The image is scanned with a spinning disk that is pat- 
terned with holes. The detector is sampled continuously and 
each measurement sample is associated with the pattern of 
holes in the imaging window at the sample instant. Once 
the required measurements are recorded, the image is recon- 
structed. The central component of the coded aperture is the 
spinning disk with holes located at random positions. The 
placement of the holes and their sizes depend on the largest 
imaging wavelength, Anux. Electromagnetic analysis'0 has 
shown that for a disk of thickness around three Xlmx the 

C1J.IK. 

Fig. 1 Conceptual drawing ot the coded aperture placed in the image 
plane of the imaging system. Insert: arbitrary division of the imaging 
window into pixels. 

minimal hole radius should be greater than l^A,^ and 
the minimal edge to edge separation between holes should 
be one Amax. As long as the radius of the holes and the 
depth increase proportionally, transmission and linearity 
are preserved. Because of the assumptions of the image 
reconstruction method, the transmission of each hole must 
be unity, and transmission from many holes must be linear. 

Another component of importance is the collecting hom 
placed behind the imaging window and the disk. This col- 
lecting mechanism is necessary for coupling all of the energy 
that makes its way through the holes into the detector. An 
integrating sphere can also be used when the signal is abun- 
dant, but this is rarely the case with active sub-millimeter 
wave systems. Alternatively, if a hom or integrating sphere 
is not available, the measured signal should be a good repre- 
sentation of the energy through the holes. By measuring the 
transmitted field in the far field of the imaging window or by 
use of a lens, the received signal becomes representative of 
the total energy in the signal. This effect is a direct result of 
the forward scattering theorem. 

The imaging window is another component. It is an aper- 
ture that limits the part of the disk where the image is formed 
and scanned. The size of the imaging window determines the 
physical size of the image. It can be of any shape; two shapes 
that are considered in this paper are square and narrow 
rectangle (slit). 

2.1 Mathematical Formulation of the Imaging 
Problem 

For reconstruction purposes, the imaging problem is posed 
as a linear system of equations and is presented in matrix 
notation 

Mp + 77 = m = m +17. (1) 

For an image of n X n pixels, the column vectors m, m, 17, 
have dimensions k x 1, the column vector p has dimensions 
n2 xl, and the matrix M is a matrix of dimensions k x n2. 
The vector p is composed of the values of each image pixel. 
The vector m = m + 77 is composed of the values of each 
measurement and is called the measurement vector. The vec- 
tor m is the noiseless measurement and rj is the measurement 
noise. The number of measurements is k. The matrix M is 
called the measurement matrix and each of its rows encodes 
the pattern of holes over the imaging window for each mea- 
surement. In this work we consider the case when k — n2 and 
the measurement matrix is square. Referring to the insert in 
Fig. 1, each entry of each row of the measurement matrix is 
calculated as the fraction of the area of the corresponding 

Optical Engineering 091612-2 September 2012/Vol. 51(9) 

0w.-nioaded from SPiEDigiul Ltoraryon 15 JunSOlt to N1.22SX5.3?. Tefmsct Use: htlp:/7spied.otgAemis 



Furxhi, Jacobs, and Preza: Image plane coded aperture for terahertz imaging 

pixel covered by holes. For instance, the measurement matrix 
entries Afjj = 0.23, M]]2 = 0.27, M13 = 0, correspond to 
image pixel entries plt p^, and p3 in the insert and represent 
how much of the area of each pixel is covered by the holes. 
As the disk rotates and a new measurement is acquired, the 
measurement matrix entries change to reflect the area of 
intersection between pixels and holes. Linear equations 
can be formed using these measurement matrix entry values, 
the unknown pixel values, and the measurement values or 

Mup! + ... + M]np„ + ... -f M,„J/V = »»l 

...=m... (2) 

M„*iPi + ... + M„,nPn + ... + M„v/v = m„». 

Interpreting these linear equations, the entries of the mea- 
surement matrix can also be understood as the contribution 
of each pixel to the measurement. The sizes of the pixels are 
arbitrary; therefore, the imaging window can be divided into 
as many pixels as desired. However, as the number of pixels 
increases, the rows of the measurement matrix become less 
linearly independent. The linear independence of the equa- 
tions whose coefficients are represented in the rows of the 
measurement matrix is assumed in order to solve Eq. (1). 
The pixels can also take any shape and are not limited to 
the square shape shown in the insert of Fig. 1. 

Ideally, the mathematical formulation of the imaging 
problem requires that the measurement samples be associated 
with the pattern of holes (the measurement matrix row) in the 
imaging window at the sample instant. In the actual implemen- 
tation the precise location of the holes is only known to within a 
constant offset angle. Equations (1) and (2) can be interpreted as 
a matrix representation of the correlation of the disk hole pattern 
with the image discretized in pixels. By empirically testing 
assumed offset angles in the formulation of the measurement 
matrix and checking the resulting image registration for a cali- 
bration image (a point source), this unknown can be found. 

In constructing the measurement matrix in Eq. (1) we 
make the following assumptions. Each measurement is 
collected as the pattern of holes in the imaging window 
is stationary. All the energy that passes through the holes 
is collected and measured by the detector. The measured 
energy is the sum of the energy passing through all the 
holes. However, all of these assumptions are violated by 
the actual implementation. The disk is rotating at a constant 
speed, and each measurement is collected as the disk rotates. 
The majority, but not all, of the energy that goes through the 
holes is collected and measured. However, in the current 
implementation the error introduced by the approximate 
measurement model is overshadowed due to the measure- 
ment noise. Both the noise and error due to the measurement 
model approximation are mitigated by the regularization that 
is introduced in solving Eq. (1). 

3 Image Reconstruction 
The unknown pixel values are obtained by solving Eq. (1). In 
the presence of noise and inaccuracies in the coefficients of 
the measurements matrix only an approximate solution, p, 
can be obtained because the problem is ill-conditioned. A 
number of solution methods can be borrowed from the 
inverse imaging literature as well as from the compressive 

sensing literature. Most methods however, are iterative 
in nature and therefore not suited for real-time systems. 
For real-time systems, closed form solutions are preferred. 
One method for finding the approximate closed form solu- 
tion is the regularized least squares18 

M7M + X/.HfH.' MTm = R(iij)ih, (3) 

where ^,- are regularization parameters, H, are linear opera- 
tors applied on the solution, and the superscript T denotes the 
matrix transpose. Borrowing notation from Bertero and Boc- 
cacci,'8 the resulting matrix multiplication and additions are 
all grouped together into R(//,■) for notational ease. In the 
absence of any regularization R(//,-= 0) = M_1, is the 
inverse of M. The linear operators H, are modeled using 
a priori knowledge of the solution. For example, if the mini- 
mal norm solution is desired, the linear operator is the 
identity matrix. If the solution is smooth, the linear operator 
could be the Laplacian so that sharp transitions are 
minimized. 

From Eqs. (1) and (3) we can write the approximate 
solution in terms of a noiseless approximation term and a 
propagated noise term 

p = R(ji,)m + RQifo. (4) 

In the absence of noise and regularization the approximate 
solution reaches the exact solution 

lim   R(fii)m + R{jdi)j] = M~1m = p. 
t]~*Q,n, -+0 

(5) 

The exact solution is defined by Eq. (5) and should be inter- 
preted as the "model limited" reconstruction of the image 
plane, not the object plane. The term "model limited" refers 
to the fidelity of the measurement model represented by the 
measurement matrix M. With the approximate and exact 
reconstructions defined, we can express the reconstruction 
error e as 

e= p-p   e = [R{pi)m -p} + R(^,-)7- (6) 

The relative reconstruction error is a more useful quantity 
and it is given as 

RRE = - 
p\\' 

(7) 

For the regularized least squares solution, the relative recon- 
struction error depends on the measurement noise, ?;, and on 
the regularization parameters, pt. 

The reconstruction error of Eq. (6) is composed of 
two terms: the approximation error [R(^,)m - p] and the 
noise propagation [R(//,);;]. Expanding R(/^,) as in 
Eq. (3), one observes that the approximation error is directly 
related to the regularization parameters, and the noise propa- 
gation term is inversely related to the regularization para- 
meters. When the measurement matrix is only mildly iD- 
conditioned and the regularization parameters are small, 
the noise propagation term dominates the reconstruction 
error.18 Ideally we require measurement matrices to have 
low condition numbers or to be mildly ill-conditioned. 
Real-time imaging is more forgiving of noise propagation 
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than approximation error. The noise will appear to have high 
spatial and temporal frequency spectrum and will be inte- 
grated out by the eye of the observer while the approximation 
error will have low spatial and temporal frequency spectrum 
and will appear as clutter. 

3.1 Dependence of the Measurement Matrix on 
Device Implementation 

The analysis presented above indicates that low condition 
number measurement matrices are desired. For the coded 
aperture described here, the condition of the measurement 
matrix is strongly related to the size of the disk and the num- 
ber of measurements that are recorded for each rotation of the 
disk. High pixel count images require an equally high num- 
ber of measurements. As the number of measurements 
increases, the patterns used to form the linear equations 
represented in Eq. (2) become similar or correlated, and 
the equations become less independent. This results in an 
ill-conditioned measurement matrix. Three approaches can 
be used to mitigate this effect while keeping the resulting 
image pixel count reasonable. The first approach involves 
changing the size of the disk. The disk size can be increased 
while holding the imaging window size constant and posi- 
tioned toward the perimeter of the disk. This will increase 
the arc separation between measurements resulting in 
more variation in pattern between measurements. Increasing 
the size of the disk increases the form factor and the mechan- 
ical and fabrication complexity of the device. Further analy- 
sis is required to determine the limits of the disk size that can 
be used. 

Another approach is turning the imager into a line imager 
and coupling it with a tilting mirror to form two-dimensional 
images. For this purpose the imaging window can be made 
into a vertical slit (with respect to the imaging window in 
Fig. 1). In this case fewer measurements are acquired per 
rotation and nonsimilar patterns are more abundant facilitat- 
ing linear independence between measurements and there- 
fore good reconstruction. The tilting mirror would have a 
small form factor and would be placed immediately before 
the coded aperture. This approach also increases the mechan- 
ical complexity of the system but keeps the form factor of the 
system unchanged. In addition, a line imager is useful in and 
of itself. For example, it can be used in conjunction with an 
optical camera in a hallway to scan personnel for concealed 
objects using self motion of the person to form the THz 
image. The system could then superimpose the THz images 
on the optical images as personnel pass through the hallway. 

A third approach is the use of compressive sampling (CS) 
reconstruction methods.17 In the CS approach the number of 
measurements in one rotation of the disk can be less than the 
number of pixels or k < n2. This allows larger spacing 
between measurements and hence less correlation between 
measurement matrix entries. Our preliminary analyses 
with the random hole patterns have indicated that the result- 
ing measurement matrices are still correlated even when half 
the number of measurements are used and they do not satisfy 
the restricted isometry property (RIP). However, combina- 
tions of different hole and pixel shapes might result in mea- 
surement matrices that satisfy the RIP. In addition, the 
identification of a sparsity basis could allow the use of 
even fewer measurements resulting in even less measurement 
correlation. Another implication of using CS reconstruction 

methods is the increased measurement integration time for 
equal measurement frame rates. This results in higher mea- 
surement SNR. Further study is required to determine if the 
information gain in measurement decorrelation and the 
improvement in SNR outweigh the information loss because 
of reduced measurements. Also, another application-depen- 
dent consideration is the reconstruction time. One disadvan- 
tage of CS reconstruction methods over the closed form 
methods is their iterative nature not suited for real time 
imaging. 

3.2 Performance Evaluation with Simulations 

To illustrate the effect of the regularization parameters on the 
reconstruction, we simulated the reconstruction of noisy 
measurements using Eq. (3). We minimized both the 
norm and the Laplacian of the solution. The operator for 
the norm is the identity matrix and the operator for the Lapla- 
cian is the one defined in Ref. 19. We sought to reconstruct a 
32 x 32 pixel image of a gun shown in Fig. 2(a). An image 
size of 32 x 32 pixels was chosen to facilitate fast calcula- 
tion of the relative reconstruction error in Eq. (7). We simu- 
lated the reconstruction using both a two-dimensional 
imaging window and a line or slit imaging window. We 
did this to support our comments about the advantage of 
the line imager over the two-dimensional imager with respect 
to the quality of reconstruction. The hole pattern we used in 
these simulations is the one we implemented, described in 
the next section and shown in Fig. 3. The imaging windows 
that were simulated were a 34 mm by 34 mm square and a 
34/32 mm by 34 mm vertical slit (with respect to the ima- 
ging window in Fig. 1). The imaging windows were super- 
imposed over the hole pattern to form measurement matrices 
of size 1024 x 1024 and 32 X 32, respectively, as the hole 
pattern is rotated. 

For the two-dimensional image reconstruction, the mea- 
sured signal was simulated by multiplying the measure- 
ment matrix with the reshaped (1024 x 1) gun image values. 
The measured signal was corrupted with zero mean white 

> -.-iftwltf      un , t ~i 

Fig. 2 (a) Target image, (b) two-dimensional imager reconstruction 
from signal with 20 dB SNR, (c) two-dimensional imager reconstruc- 
tion from signal with 40 dB SNR, and (d) line imager reconstruction 
from signal with 20 dB SNR. 
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Fig. 3 Implementation of the image plane coded aperture using parts 
of a 5.25 in. hard drive. 

Gaussian noise (using the AWGN function in Matlab) so that 
the resulting signal to noise ratio of the signal was 20, 30 and 
40 dB. The reconstructed image was obtained by multiplying 
the corrupted signal with the regularized matrix R(//,). For 
the slit image reconstruction, the measured signal for each 
image column was simulated by multiplying the measure- 
ment matrix with each column. Each of the signals was cor- 
rupted with zero mean white Gaussian noise so the resulting 
signal to noise ratio of the signal was 20, 30 and 40 dB. The 
reconstructed image was pieced together with the reconstruc- 
tions from each column as the corrupted signals were 
multiplied with the regularized matrix R(ju,). 

For both imager cases and all the noise cases, the regu- 
larization parameters were varied iteratively and the relative 
reconstruction error (RRE) was calculated using Eq. (7) 
forming two-dimensional plots of RRE versus the two 
regularization parameters. The regularization parameters 
that yielded the minimum RRE were used to calculate the 
reconstructions shown in Fig. 2. Figure 2 shows the target 
image [Fig. 2(a)] and the reconstructed images when the 
imaging window is square and the SNR of the measured sig- 
nal is 20 dB [Fig. 2(b)] and 40 dB [Fig. 2(c)], and when it is a 
vertical slit (SNR 20 dB) and the image is scanned across 
[Fig. 2(d)]. The plots of the RRE for both parameters are 
shown in Fig. 4. Figure 4(a) shows how the RRE changes 
with respect to the norm regularization parameter when 
the Laplacian regularization parameter is optimal (the one 
yielding minimum RRE). Figure 4(b) shows how the RRE 
changes with respect to the Laplacian regularization para- 
meter when the norm regularization parameter is optimal. 
Plots for the two-dimensional and line image reconstruction 
are shown for measurement signals with 20, 30 and 40 dB 
SNR. The plots are shown in logarithmic scale with respect 
to the regularization parameters to display the large dynamic 
range of the parameters, which depends on noise level and 
imager configuration. 

For the optimal regularization parameters, the RRE for the 
line imager is lower than for the two-dimensional imager for 
all noise levels. For example, when the SNR is 20 dB, the mini- 
mum RRE for the two-dimensional imager reconstruction is 
0.678 and for the line imager reconstruction is 0.191, for SNR 
30 dB they are 0.631 and 0.176, respectively, and for SNR 
40 dB they are 0.527 and 0.105, respectively. This difference 

SNR 20dB 

SNR 30dB 
SNR 40dB 

Lupkcian 

(b) 

Fig. 4 Relative reconstruction error plotted versus the norm regular- 
ization parameter (a) and versus the Laplacian regularization para- 
meter (b) for the two-dimensional (2-D) imager and for the line 
imager (1-D) when the measurement signal is corrupted by zero 
mean white Gaussian noise. The lines are slices of the two-dimen- 
sional RRE plots when the other parameter is optimal (minimal RRE). 

is obvious in the reconstructions in Fig. 2(b) and 2(d). Also, 
because the two-dimensional imager problem is more ill-con- 
ditioned than the line imager problem, higher regularization 
values are required to reconstruct the best two-dimensional 
imager image than the best line imager image. As a result 
the reconstruction error in the two-dimensional imager recon- 
struction is clutter like (dominated by approximation error) 
while the line imager reconstruction is noise like (dominated 
by noise propagation). This effect of the optimal regularization 
parameter on the reconstruction can also be observed by com- 
paring the two-dimensional imager reconstructions with 
20 dB SNR [Fig. 2(b)] and 40 dB SNR [Fig. 2(c)]. As evident 
from the plots in Fig. 4, the impact on regularization due to 
the Laplacian regularization parameter is greater than from 
the norm regularization parameter. However, for values of the 
Laplacian parameter different than the optimal the impact of 
the norm parameter becomes more important. 

As shown above, the line imager performs better than the 
two dimensional imager for the particular hole pattern that 
we have implemented. One assumption that was made how- 
ever, is that the SNR for the measurement is the same for the 
two-dimensional and line configurations. This assumption is 
justified if proper optics are used for both imagers while the 
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power of the illumination source is held constant. A proper 
optical system would illuminate and image only the region of 
the object being measured by the aperture. 

The condition number of the line imager can be lowered 
even further if a different pattern is implemented on the 
disk. A pattern that implements a simplex code mask (SCM) 
is possible with the line configuration. The measurement 
matrix that results from an SCM consists of Is and Os. Accord- 
ing to Harwit,20 the SCM measurement matrix is the matrix 
with the lowest condition number when only entries of 0 
and 1 can be used. The condition of the two-dimensional 
imager can also be lowered using a different disk pattern, 
and such patterns will be investigated in the future. 

4 Implementation of the Image Plane Coded 
Aperture and Imaging Setups 

The two-dimensional image plane coded aperture was imple- 
mented using parts of a 5.25 in. hard drive. One of the platters 
of the hard drive was used as the spinning disk. The radius of 
the holes and their minimal separation were designed for 
operation at 640 GHz. A hole radius of 1 mm and a minimal 
separation of 2 mm were chosen to guarantee unity transmis- 
sion, linearity, the structural integrity of the disk, and because 
of the availability of standard tools in these sizes. With these 
parameters as restrictions, a random pattern of 431 holes was 
generated, and the holes were drilled on a CNC mill. The case 
of the hard drive was cut and modified for access to the disk and 
for mounting on the optical stages. The electronics of the 
motor driver were also modified so that the disk could be 
rotated at 3000 rotations per minute (RPM). An emitter 
diode and phototransistor pair were placed in the proximity 
of the disk to register the measurement samples with the cor- 
responding hole patterns in the imaging window. A 34 mm X 
34 mm imaging window aperture was machined on two slabs 
of aluminum, and they were mounted to sandwich the disk. 
Figure 3 shows a picture of the front and back of the device 
with all the components described above labeled. 

The coded aperture was used in two imaging configura- 
tions. In the first configuration the device was paired with the 
sub-millimeter wave receiver to form images in transmission 
mode. A sketch and picture of this setup are shown in Fig. 5. 
We use a heterodyne source and receiver pair from Virginia 
Diodes. The source and receiver operate at 640 GHz. In this 
configuration, the 640 GHz source is placed 1 m in front of 
the device and is flood illuminating the imaging window. An 
object mask is placed right before the imaging window, and 
the projected image is scanned by the spinning disk. The 
640 GHz receiver is placed behind the disk and measures 
the energy passing through the holes. The intermediate fre- 
quency (IF) of the receiver was down converted from 4.8 to 
2.2 GHz and this new IF was supplied to a spectrum analy- 
zer. The spectrum analyzer was used to band-pass filter and 
amplify the signal. A time sweep of the signal triggered for 
each rotation was generated, and the video output of the 
spectrum analyzer was sampled at a rate of 250 kHz 
using a 16 bit data acquisition card from Measurement Com- 
puting. The disk rotates at 50 rotations per second and 5000 
samples are recorded per rotation. The sampled signal is 
low-pass filtered in Matlab and 4096 consecutive samples 
are used to reconstruct a 64 x 64 pixel image using Eq. (3). 

In the second configuration, the device was paired 
with the sub-millimeter wave receiver to form images in 

640GHz source      Object mask 640GHz receiver 

Fig. 5 Sub-millimeter wave setup in transmission mode, (a) sketch 
and (b) actual implementation. 

stand-off mode. A sketch and picture of this setup are 
shown in Fig. 6. The 640 GHz source is located approxi- 
mately 2 m from the target and flood illuminates it. The 
energy reflected by the target is collected by the imaging mir- 
ror (in the implementation, the beam is folded by two flat 
mirrors) 10 m away. This mirror is a section of an ellipsoid 
of rotation with one focus at 1 m and the other at 10 m. The 
image is formed on the 1 m side. The system has an effective 
diameter of 0.305 m (12 in.), effective focal length of 
0.909 m, resulting in a F# of 2.983. The magnification of 

Target 640CHz     640GHz""| ,' 
source        receirer     V > 

Coded aperture 

(») 
..s.v.   :.   . .-■■;-;::;j::    ,,    • .  . 
ding mirrors   Coded aperture Elliptical i 

I  * ' mirror 

GHz source ,     MOCHxl 

Fig. 6 Sub-millimeter wave setup in stand-off mode, (a) sketch and 
(b) actual implementation. 
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the system is 0.1, the depth of focus for coherent radiation is 
0.011 m, and the depth of field for incoherent radiation is 
1.016 m. The airy disk diameter is 3.75 mm for a wavelength 
of 468.43 fim, corresponding to the illumination frequency 
of 640 GHz. The imaging mirror forms an image of the target 
in the imaging window of the coded aperture. The image is 
then scanned by the spinning disk, and the energy that goes 
through the holes is measured by the 640 GHz receiver. The 
same data collection setup as in the first configuration is used 
to sample the received signal and reconstruct a 64 x 64 
image using Eq. (3). 

5 Results 
For both imager configurations the reconstruction was per- 
formed using Matlab software. The Matlab Data Acquisition 
Toolbox was used to acquire the data from the data acquisi- 
tion device. Code was written to implement Eq. (3) and to 
calculate the matrices. The disk is rotated at a rate of 50 rota- 
tions per second and therefore allows image formation at 50 
frames per second (fps). However, the data acquisition speed 
of the current implementation is only 10 fps, and when an 
image is reconstructed and displayed on the screen the 
image rate is 6 fps. These slower frame rates are due to 
the implementation in Matlab. On a laptop PC (processor: 
IntelfJR) Core(TM)2 Duo CPU T6670 at 2.2 GHz), the 
data reconstruction step (matriX[40o4X4094] vector|4oo.6xlj pro- 
duct) in the current Matlab implementation takes only 30 ms 
and the rest of the loop time is occupied by the data acquisi- 
tion, image reshaping, filtering, and image display. All these 
steps can be made faster using a compiled implementation 
and dedicated processing. 

For the transmission mode configuration we used the 
mask shown in Fig. 7(a) as the object. An aperture in the 
shape of a hand gun was cut on an aluminum sheet, and 
the sheet was placed in front of the coded aperture as 
shown in Fig. 5. For the stand-off configuration, an alumi- 
num plate was roughened by sanding and a piece of carpet 
with an aperture in the shape of a hand gun was placed over 
it. This target is shown in Fig. 7(b). The target was placed 
10 m from the image forming mirror, as shown in Fig. 6, and 
an image was formed on the coded aperture. 

The results of the reconstruction are shown in Fig. 7(c) 
and 7(d). In both cases the shape of the gun can be distin- 
guished. The image formed in the transmission mode 
configuration resembles the target more than the image 
formed in the stand-off configuration. One of the reasons 
for this difference is the presence of an optical system in 
the stand-off configuration, which amplifies the effects of 
coherent imaging because of aberrations. Another reason 
is the specular nature of active imaging. Both contribute 
to the nonuniformity of the image intensity on the image 
plane for the stand-off case. We note that in order to acquire 
the image in stand-off mode [Fig. 7(d)] the object must be 
positioned precisely. A slight angular movement, with 
respect to the optical axis, causes one part of the object to 
be imaged with higher intensity than the other parts, and 
only it can be imaged. 

The reconstruction error is present in both reconstruc- 
tions. As discussed in Sec. 3, this is an effect of the 
ill-conditioned measurement matrix and the measurement 
noise, the nonlinearity of the measurement, and the assump- 
tion of static hole patterns during the detector integration 

%   *      s 

(c) (d) 

Fig. 7 Imaging targets and image reconstructions from each config- 
uration; (a) target mask used for sub-millimeter wave transmission 
mode configuration, (b) target for the sub-millimeter wave stand-off 
mode configuration, (c) reconstruction from the sub-millimeter wave 
transmission mode configuration, (d) reconstruction from the sub- 
millimeter wave stand-off mode configuration. 

time. The reconstruction noise appears in the form of clutter 
since the reconstruction required high levels of regulariza- 
tion. In both cases the norm and the Laplacian of the solution 
were minimized as a result of the regularization. 

6 Conclusions 
We have built an image plane coded aperture device for 
sub-millimeter wave imaging. This coded aperture has 
high modulation levels, high scanning rates, low mechanical 
complexity, and low cost. The design parameters were iden- 
tified in our earlier publications.9,'ft2i We presented a math- 
ematical formulation for the imaging problem with the image 
plane coded aperture and a regularized least squares recon- 
struction method that performs in real time. The effect of the 
regularization was discussed in terms of the relative recon- 
struction error and in terms of the nature of the reconstruction 
error or noise. Low regularization results in high frequency 
spatial and temporal noise, while high regularization results 
in clutter type noise. For some coded aperture configurations, 
e.g., the two-dimensional configuration, high regularization 
is required because the measurement matrix is very ill- 
conditioned. For other configurations, e.g., the line imager 
configuration, low regularization is possible and the recon- 
structions have low error. The imagers that we implemented 
and presented here are two-dimensional and can scan images 
at 50 fps. They can record images at 10 fps. They can scan, 
reconstruct, and display images at 6 fps. The data acquisition 
and image reconstruction chains are currently implemented 
on a personal computer using Matlab interpreted code. The 
processes of data acquisition, image reconstruction, and 
image display can be accelerated to produce images at a 
rate of 50 fps if the code is compiled and a dedicated 
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computer is used. Our next efforts will be focused on better 
models of the measurement matrix and the building of a line 
imager, this will include optics appropriate for line imaging. 
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Abstract: Image plane coding is an alternative to focal plane arrays in terahertz imaging devices. A 
device for terahertz image plane coding is described. Analysis shows that line imaging devices are 
favored as opposed to two-dimensional imaging. 
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1. Introduction 

The design of imaging sensors operating at millimeter and sub-millimeter wavelengths is complicated by the lack of 
readily available focal plane arrays. The engineering of focal plane arrays at these wavelengths is challenging due 
to either cooling requirements for passive sensing or heterodyning for active sensingfl, 2, 3]. To date imaging in 
these regimes has been dominated by sensors comprised of a single or a few detectors. In order to construct a full 
size image a mechanical scanning system is often used. Alternatives involving the use of phased array techniques are 
currently being developed as well[4]. Our approach to this problem has been to pursue the idea of image plane coding. 
Image plane coding is the process of encoding the information in the image into a series of linear measurements over 
time which are processed to reconstruct the image. A variety of devices have been employed for visible band image 
plane coding including liquid crystal spatial light modulators and digital mirror devices. The particular device we 
have developed is, as far as we know, the only device that is capable of operation at millimeter and sub-millimeter 
wavelengths and that allows real time image formation. 

2. Measurements 

As mentioned in the introduction, image plane coding is the encoding of an image into a series of linear measurements 
on the image. Each measurement is a linear combination of many pixels in the image. Mathematically, the process is 
described by 

y = Mx + r) (1) 

where x is a vector representing the image, M is a matrix representing the measurement process, 77 is a vector 
representing the noise in the measurement process, and y is a vector of observed measurements. If N is the number 
of pixels in the image x and M is the number of measurements in y then M is a M x N matrix. For M < N, 
the solution to equation 1 involves iteration and hence is not suited for real time operation. In addition, images of 
most objects of interest in the sub-millimeter wave range will be limited in size due to the resolution restrictions of 
diffraction. Therefore, we only consider the case of M = N. 

Engineering an imaging system from equation 1 requires the co-design of the measurement matrix M and an 
algorithm for reconstructing the image x from the measurements y. Because of measurement noise, the reconstructed 
image will only be an approximation of the real image x. Ill-conditioning in the measurement matrix amplifies the 
noise in most reconstruction algorithms and hence also increases the uncertainty in the estimate of of image. These 
considerations are addressed in inverse methods employing regularization. The particular method we have to date 
found most successful with our method of generating measurements is a generalized form of Tikhonov regularization 
defined by the following[5]. 

MrM + £^,H,rHi MTy = Ry (2) 

In equation 2, the parameters /x* are Lagrangian multipliers or the regularization parameters and the matrices H, 
define linear operations performed on the results. By appropriate choice of these matrices and multipliers the effects 
of noise can be minimized in the reconstruction. For our work we use two linear operators: the linear operator and the 
Laplacian operator. Note that once the measurement matrix has been designed and the linear operators selected, the 
matrix R is known so that image reconstruction is simply a matrix multiplication. 
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Fig. 1: Schematic representation of spinning disk image plane coding apparatus. 

3.   Device 

The device we use for generating measurement matrices consists of a spinning metal disk with a pattern of circular 
holes coupled with a single heterodyne detector. The device is positioned in the imaging plane of an optical system. The 
image is restricted to a rectangular section of the disk through the use of a mask. The device is shown schematically in 
Figure 1. Holes in the metal disk are used for sampling the image. We use hole radii of 1.4A in a 2.7A thick metal disk 
and achieve a transmission of approximately 100%. In order to achieve independent measurements it is important to 
avoid hole to hole coupling effects. We have found that a hole spacing of A or greater achieves this goal. It should be 
noted that a hole pattern designed for any wavelength will also work well for any smaller wavelength meaning that the 
hole pattern will preserve the transmission properties and independence properties achieved at the larger wavelength. 

The design of the hole pattern and the sampling scheme of the image and detector are the main factors governing 
the properties of the measurement matrix. Hole patterns are constructed by placing possible hole sites in a hexagonal 
pattern in a square having side length equal to the diameter of the disk. The side length of each hexagon is selected to 
be 3.8A which will allow for 1.4A radius holes at A spacing. The hexagonal pattern results in the closest hole packing 
density. By selecting an occupation probability and randomly assigning actual holes to each of these sites, a unique 
hole pattern is generated. Only holes within an annulus defined by the imaging window are actually fabricated on the 
disk. 

Once a hole pattern is determined, the sampling scheme of the image and detector can be used to form the measure- 
ment matrix. The imaging window is divided into virtual pixels of rectangular shape (see inset in Figure 1) and arbitrary 
size. Each pixel is assumed to have a constant intensity and together form the vector x. The entries in a single row 
of the measurement matrix are computed as the fractional area of each visible hole on each pixel. The disk is rotated 
behind the imaging window to produce a new pattern of holes in the imaging window and another row in the measure- 
ment matrix is generated. This continues until the N x N measurement matrix is filled. As the disk rotates, samples 
of the energy transmitted through the holes are collected by the receiver. If the disk does not rotate very far between 
samples by the receiver, there could be significant correlation between adjacent rows in the measurement matrix. The 
correlation is directly dependent on how long a hole is within the imaging window. Figure 2(a) shows the transit time 
of a single hole through the imaging window normalized to the sampling time for various image sizes. Sampling time 
is determined by the size of the image and the speed of rotation of the disk. Since patterns repeat after one rotation 
of the disk, to avoid correlations due to repeated patterns, the measurement matrix must be filled in one rotation. As 
a result, the sampling time is simply the number of pixels in an image N divided into the rotation time. Since each 
rotation yields an image, the rotation time is the frame time for video. 

The vertical axis of Figure 2(a) is the number of samples taken during a transit time. With hundreds of samples 
being taken for a square image and only one or two for a line image it is clear that avoidance of correlation in the 
measurement matrix will favor line image scenarios. This can be seen more clearly by viewing measurement matrix 
condition numbers plotted against normalized transit time (Figure 2(b)). This Figure was produced by making 10 disk 
realizations and producing measurement matrices for 64 x K images where K = 1, 2,4,8,16, 32,64. The condition 
numbers for each realization are then averaged at each factor of K. As the factor K increases, the logarithm of the 
condition number of the measurement matrix increases in a power law fashion. This is demonstrated in Figure 3 where 
simulations of the measurement and reconstruction process are done for both two dimensional imaging and a line 
imaging scanner. The difference between the two dimensional and line images is that only the vertical dimension is 
reconstructed in the line image whereas both are reconstructed in the two dimensional image. In practical implemen- 
tations, the line image would have to be scanned across the target to make an image. 
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Fig. 2: (a) Transit time of a hole normalized to the sample time for three image sizes/orientations, (b) Measurement matrix condition number as < 
function of transit ume. 

(a) (b) (c) 

Fig. 3: Target image (a), two-dimensional imager reconstruction (b), and line imager reconstruction (c) 

4.    Conclusions 

To date, we have constructed both line imagers and two dimensional imagers operating at 640 GHz and optical wave- 
lengths using this approach[6, 7]. While we believe we understand the imaging process using this device there are 
several avenues for improvement that are being pursued. Our primary efforts are being expended on optimizing the 
measurement matrix/hole pattern design. Our current approach is trial and error and as we refine our models of the 
imaging process we will improve the procedure for generating hole patterns. We are also improving the optic charac- 
teristics of our system. Further efforts at characterizing and reducing measurement noise are also being undertaken. 
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Abstract—Image plane coded aperture (IPCA) detectors are 
composed of a single element detector sensitive to the radiation 
frequencies of interest, a »configurable spatial light modulator 
(SLM), and a mechanism such as a lens or a horn that is used 
to collect the radiation modulated by the SLM and focus it on 
the sensing element. The IPCA detector is placed hi the image 
plane of an imager and is used to make linear measurements on 
the image by modulating the signal spatially and/or temporally 
in amplitude, frequency, phase, or polarization. The image is 
then reconstructed computationally. In this paper we present 
an implementation of an IPCA detector that can be used for 
Terahertz Imaging and discuss other possible implementations. 

Index Terms—Terahertz imaging, Coded apertures, Radar 
imaging 

I. INTRODUCTION 

MUCH of the interest in terahertz imaging is motivated 
by the abilities of THz frequencies to penetrate most 

manmade materials particularly clothing [1], [2]. Additionally, 
many harmful chemicals and explosives display absorption 
lines that make them identifiable by THz [3]. These charac- 
teristics of THz make it attractive for security applications. 
Unfortunately, focal plane arrays for this regime have not been 
commercially forthcoming and current offerings either lack 
sensitivity or are too costly to be used in practical security 
situations. An intermediate solution has been the development 
of scanning systems. These, however, have their own cost, 
weight, power, and frame rate limitations. 

Our interest is focused in the part of the THz spectrum 
between 300GHz and 3THz which is referred as the sub- 
rnillimeter wave region. In this region, sensitive detectors 
are available and the technology is mature. Both active and 
passive imaging configurations at these frequencies have been 
successfully demonstrated. Currently, the new frontier in sub- 
millimeter wave imaging is faster frame rates and smaller size, 
weight, power consumption, and cost. Passive systems that 
operate at close to real-time require cooled detectors and are 
large [4], [5]. Images from these systems are similar to infrared 
images providing temperature difference/contrast information 
and therefore are easy to interpret. On the other hand, the 
images acquired with active imagers, that are coherent, have 
very high dynamic range and suffer from the specular reflec- 
tions and clutter in the scene, which makes them difficult to 
interpret. However, information from active THz radar imaging 
is easy to interpret [6], An advantage of active systems is that 
they operate at room temperature and usually their physical 
size is limited by the optical aperture rather than the detector 
and source modules. 

One of the most promising sub-inillimeter wave systems is 
the imaging radar system developed by NASA's Jet Propulsion 
Laboratory [6], It mitigates clutter and specular reflection from 
the scene by forming range maps of the scene rather than con- 
trast images. The JPL system is currently limited to 1Hz frame 
rates. The reported bottlenecks are the mechanical scanning 
and the signal to noise (SNR) of single pulse detection. The 
authors ofthat work acknowledge the practical limitations with 
speeding the mechanical scanning system and propose the use 
of transceiver arrays as a solution to faster frame rate. One 
alternate approach to the mechanical scan has been proposed 
by Lukkanen [7] and entails using an electronically controlled 
reflect-array that can be used as a beam steerer. This work 
is in its design phase. Our substitute for mechanical scanning 
is the image plane coded aperture (IPCA) detector. In this 
paper we present the concept of the IPCA detectors, show one 
implementation, and discuss other possible implementations of 
such detectors. 

II. IMAGE PLANE CODED APERTURE DETECTORS 

Coded aperture detectors are usually envisioned as substi- 
tutes for the optical system of an imager when the optical 
aperture is too large to allow the use of optics. Image plane 
coded aperture detectors on the other hand, are used as 
substitutes for focal plane arrays in frequency regimes where 
focal plane arrays are impractical, expensive, or non-existent. 
A conceptual sketch showing the place of the IPCA detector 
in an imaging system and its components is shown in Fig. 1. 

IPCA detector 

Single 
elf me^t j 
detector 

Figure I.    The role of IPCA detectors in an imaging system 

IPCA detectors are composed of a single element detector 
sensitive to the radiation frequency of interest, a reconfigurable 
spatial light modulator (SLM), and a mechanism such as a 
lens or a horn that is used to collect the radiation past the 
SLM and focus it on the sensing element. The IPCA detector 
is placed in the image plane of an imager and is used to 



make linear measurements on the image by modulating the 
information on the image plane spatially and/or temporally 
in amplitude, frequency, phase, or polarization. The image 
is then reconstructed computationally using inverse imaging 
techniques[8]. 

Because the IPCA detectors make linear measurements of 
the image plane a computational reconstruction is necessary. 
For real-time imaging these computations should happen faster 
than the required frame rate. Image reconstruction algorithms 
that satisfy this criterion are closed form solutions that are 
reduced to simple matrix vector multiplications. However, 
because of other practical limitations sub-millimeter wave 
images usually have low resolution (i.e. 64x64 pixels) and 
iterative solutions can also be used without compromising 
frame rate. The IPCA detectors can also be used to perform 
compressive imaging [9]. 

Depending on the method of modulation the IPCA detectors 
can be used in active, passive, coherent, or incoherent modes. 
As such, the use of the detectors is not limited to imaging 
but can also be used in imaging radar, spectroscopy, or multi- 
modal imaging. Multi-modal imaging is facilitated by placing 
a filer in front of the detector or by using several single element 
detectors responsive to particular wavelengths. Other config- 
urations can be envisioned where the IPCA detectors operate 
in coherent and incoherent mode (containing a coherent and 
an incoherent single element detector) to form contrast images 
as well as range profiles of the scene. An IPCA detector can 
also be used to make linear measurements of dispersed spectra 
similar to Hadamard spectroscopy [10]. 

From the aspect of signal to noise ratio (SNR), the IPCA 
detectors are favored by active imaging configurations. For 
similar illumination power, the detector SNR is comparable 
to a conjugate point imaging system and much higher than 
focal plane arrays [11]. For passive systems the performance 
is worse than that of the focal plane arrays but comparable with 
the conjugate point system [12]. However, the per pixel SNR 
after the image is reconstructed computationally suffers by an 
additional factor which can be quite high if the modulation 
patterns of the SLM are not selected properly. 

III. SPINNING DISK IPCA DETECTOR 

One possible realization of an IPCA detector that we have 
built, is shown in Fig. 2. The SLM consists of a portion 
(labeled as imaging window in Fig. 2) of a spinning disk 
with random holes. For each pattern of holes in the imaging 
window (i.e. a code) a measurement is made by the receiver 
and it is registered with the pattern. If the holes are designed 
properly, the measurement will consist of the linear combi- 
nation of portions of the image. Once the desired number of 
measurements are made, usually a number equal to the number 
of desired image pixels, the hole patterns and corresponding 
measurements are used to decode the image formed in the 
imaging window. 

The insert in Fig. 2 and equation 1 help illustrate this 
process. The imaging window is divided into pixels (n2 for this 
example), not necessarily square or regular. For each pattern 
of holes or code, we form an equation where the weighted 

„Imaging window 

Objrit 
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Figure 2.    Spinning disk IPCA detector 

pixel values (pixel values are the unknowns) add up to the 
measured value. The weights represent how much each pixel 
contributes to the measurement and are calculated as the ratio 
of the hole-pixel intersect area to the total area of the pixel. 
If the pixels are of equal area, then the equation is complete. 
If they are not, an additional factor representing the relative 
sizes of the pixels is computed and multiplied with the other 
weights. Using the equations from all the measured patterns, a 
system of equations is formed and solved using linear algebra 
methods (e.g. regularized linear least squares) [8]. 

raiiPi + •• + minPn + ■■ + mlnipn2    =    mi 
...    =   m... 

"in'iPi + •• + rnninpn + .. + mnsnjpnj    =    mni   (1) 

The other parts of the IPCA detector are the collecting 
horn and single element detector. We use a Schottky diode 
heterodyne transceiver pair from Virginia Diodes operating 
at a center frequency of 640 GHz. One possible imaging 
configuration that we have constructed in our lab is shown 
in Fig. 3. The optical system consists of a 12 inch diameter 
elliptical aperture with one focus at one meter (image space) 
and another at ten meters (target space). The source is pointed 
directly to the target three meters away and the optical aperture 
is approximately ten meters away from the target. The disk 
spins at 50 rotations per second which corresponds to an image 
frame rate of 50Hz since the necessary measurements are made 
during one revolution of the disk. The measurements out of the 
receiver are digitized using a 16-bit data acquisition card. The 
card is read by a custom Matlab script which also performs 
the image reconstruction and display. The Matlab part of the 
system slows down the image formation and display rate to 
approximately 16Hz when run on a laptop. 

Our target was an aluminum plate covered by carpet con- 
taining an aperture in the shape of a gun as shown in Fig. 3. 
The reconstructed image is shown to the right. Three bright 
spots are clearly distinguishable, the handle, middle part, and 
barrel. The clutter in the image is due to the reconstruction 
process which introduces an approximation error and noise 
propagation from the measurement to the image. The disconti- 
nuity of the target image is due to the nature of active imaging, 
i.e. specular reflections and coherent interference. 

Future efforts will be focused towards adapting the spinning 
disk IPCA detector to an imaging radar system. Also, analysis 
has shown that a line spinning disk IPCA detector results in 
lower approximation error and noise propagation during the 
image reconstruction process. Another one of our efforts will 
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Figure 3. (top) stand-off setup, (bottom left) target, (bottom right) corre- 
sponding reconstructed 64x64 pixel image acquired at 50 frames per second 
and reconstructed at 16 frames per second. 

be the development of a line IPCA detector coupled with a 
single tilting mirror to form two dimensional images. 

IV. POSSIBLE IPCA DETECTORS 

The minimization of approximation error and noise propa- 
gation during the image reconstruction process is strongly de- 
pendent on the code implemented by the detector. An optimum 
code is the Hadamard code [10]. The Hadamard code does not 
propagate noise and also has very low approximation error 
since it would not require large amount of regularization[8]. 
The Hadamard code is composed of orthogonal vectors con- 
taining values of 1 and -1. One possible implementation of an 
IPCA detector that realizes the Hadamard code would consist 
of 180 degree phase modulators, and would be suited for 
imaging radar systems. A 180 degree phase shift is equivalent 
to multiplying the incident field by -1. 

A group from the University of Virginia has built and 
demonstrated a broad-band 180 degree phase shifter using 
integrated sub-millimeter-wave Schottky diodes that operates 
at 220GHz with a bandwidth of 55GHz within a phase 
tolerance of +/- 15 degree[13]. The researchers claim that the 
technology is scalable to sub-millimeter waves in the 640GHz 
region. If this is possible, these phase shifters would be ideal 
to implement air to air couplers that can serve as the SLM 
part of the IPCA detectors. They would allow implementation 
of Hadamard codes for imaging radar. 

V. CONCLUSIONS 

We have introduced the concept of an image plane coded 
aperture (IPCA) and briefly discussed some of its applications. 
An IPCA detector that utilizes a spinning disk with holes as an 
SLM, was also described and the image of a gun-like target 
acquired with this IPCA detector was shown. The spinning 
disk IPCA scans the image plane at 50Hz. The image quality 
with this system suffers from approximation error and noise 
propagation artifacts that are introduced during the image 
reconstruction process. These artifacts can be eliminated if 
a Hadamard coding scheme is used. We give examples of 

existing research that could lead to a device for implementing 
a Hadamard code with application to a THz imaging radar. 
The use of an IPCA detector is an alternative to mechanical 
raster scanning of antennas or mirrors and focal plane arrays. 
When compared with scanning an imaging antenna or mirror, 
the IPCA detector has faster scan rates, and possibly low cost 
and compact form factor. 
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ABSTRACT 

Various schemes for active imaging require different allocations of source power and can result in different overall 
signal to noise ratios. At the University of Memphis we have developed an image-plane scanning device used 
with a single pixel detector to form video rate images of the scene. Imaging with this device requires flood 
illumination of the scene. Because sub-millimeter wave sources typically produce low power, it is a common 
belief that flood illumination results in low detected signal power and therefore low signal to noise ratios (SNR) 
at the detector. In this work we quantify the SNR at the detector for our system and compare it to conventional 
imaging systems, conjugate point imaging systems, and focal plane array imaging. Unlike the other two systems, 
imaging with our device requires an additional pixel formation step; therefore, the SNR at the detector is not 
the per-pixel SNR. We present the limits of the per-pixel SNR and discuss its dependence on various device 
components. 

Keywords: Sub-millimeter waves, terahertz, imaging, spatial light modulator, spatially selective mask, com- 
pressive sensing 

1. INTRODUCTION 

In general, an active imaging device consists of an optical system, an illumination system, a detector system, 
and a signal processing system for image reconstruction and display. There are multiple ways these systems can 
be configured and the burden each one bears in the image formation process depends on the configuration. One 
of the simplest schemes is to use a lens or mirror to focus the image of the illuminated scene onto a focal plane 
array of detectors. Signal processing for this configuration is usually simple as well as each detector in the focal 
plane array is mapped to an image pixel. For sub-millimeter wave imaging, focal plane arrays of the desired 
sizes are either expensive or non-existent. Designers of imaging systems are then forced to look at different 
schemes for forming images. Almost all involve trading image acquisition time/detector integration time for 
spatial resolution. Also the optimal illumination scheme for each configuration is different. As a result, signal to 
noise ratios for such systems are different from the focal plane array system. 

In this paper we examine the signal to noise ratio (SNR) for the various schemes and compare them. We 
restrict our study to active imaging where image brightness (signal) is controlled by the strength of the source over 
an imaged pixel. Five configurations are investigated, namely: conjugate point imaging, conjugate line imaging, 
conjugate plane imaging, conjugate line-point imaging, and conjugate plane-point imaging. These configurations 
are described in more detail in the next section, but the conjugates referred to in the system nomenclature are 
the illuminated region in the object plane and the detector array dimension in the image plane. The last two 
configurations, conjugate line-point and plane-point, require non-trivial processing of the measured noisy signal 
to reproduce the image formed on the image plane. The additional processing introduces noise in the final 
reconstructed image, therefore these two systems require additional analysis. 

In the next section we describe each of the active imaging configurations that will be analyzed and compared. 
Section 3 provides a summary of the derivation of SNR of the detected signal for active heterodyne systems 
as presented by Brown.1   The following Sections 4 and 5 provide an analysis of each imaging configuration 
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with respect to incident power on the detector and available integration time per measurement. In Section 6 we 
summarize the analysis of the previous sections to compare the SNR at the detector for each of the configurations. 
The analysis of the additional reconstruction noise for the last two configurations is presented in Section 7. In 
Section 8 we make some final remarks and present our conclusions. 

2. ACTIVE IMAGING CONFIGURATIONS 

Active imagers consist of an illuminating source, illumination optics, image forming optics, and the detector. 
The detector can be a single or multi-element detector, and more generally it can have a spatial-temporal varying 
integration aperture. As is usually the case, the imaging and illumination optics are the same, and the source 
and detector are multiplexed using a beam splitter. Depending on the imager configuration, the optics may 
contain a beam steering mechanism. The illuminating source might illuminate over regions of various shapes 
and usually consists of a single point source and beam shaping elements. 

Figures la through le show five possible active imaging configurations. Figure la shows a conjugate point 
imaging configuration. In this configuration the illumination source illuminates a diffraction limited spot in the 
object plane and the same spot is imaged on a single element detector in the image plane. Spatial resolution is 
achieved by means of a scanning mechanism that concurrently scans the illumination source and single element 
detector. 

Figure lb shows a conjugate line imaging configuration. Here the illumination source is projected over a 
line segment in the object plane; the part of the object that is illuminated is imaged in the image plane on a 
multi-element detector arranged in a line array configuration. One dimension is resolved by the multi-element 
array and the other by concurrently scanning the line source and detector across the scene. 

Figure lc shows a conjugate plane imaging configuration. The illumination source is projected over a rect- 
angular area in the object plane; the part of the object that is illuminated is imaged in the image plane on a 
multi-element detector in a rectangular array configuration. Both dimensions are resolved by the positioning of 
the detectors on the array. This configuration does not require any scanning. 

Figure Id shows a conjugate line-point imaging configuration. Here the illumination source is projected over 
a line segment in the object plane; the part of the object that is illuminated is imaged in the image plane on 
a single element detector with a line-shaped spatial-temporal varying integration aperture. One dimension is 
resolved by varying the integration aperture of the detector over time and the other by concurrently scanning 
the line source and detector across the scene. The variable integration aperture is usually implemented by a 
mask placed over the detector aperture. As shown in the figure, the detector includes a collecting lens and the 
mask. The lens is used to optically increase the integrating aperture of the detector. Because the mask only lets 
part of the radiation incident on the aperture to reach the receiving detector we define a fill ratio constant, fr. 
This constant represents the fraction of incident energy that reaches the receiving detector. 

Figure le shows a conjugate plane-point imaging configuration. Here the illumination source is projected 
over a rectangular area in the object plane. The part of the object that is illuminated is imaged in the image 
plane on a single element detector with a rectangular-shaped spatial-temporal varying integration aperture. Both 
dimensions are resolved by varying the integration aperture of the detector over time. This configuration does 
not require any image or detector scanning. 

3. SIGNAL TO NOISE RATIO OF ACTTVE HETERODYNE SYSTEMS 

In terms of SNR, the variables of interest for each configuration are integration time and power incident on the 
detector elements for each measurement. Before examining the integration time and incident power available 
for each of the five configurations, we present the dependence of the SNR on these two variables. This is a 
summary of Brown's1 SNR derivation for an active heterodyne system. A block diagram of the heterodyne 
receiver analyzed by Brown is shown in Figure 2. 

Brown defines the power SNR as the ratio of the average power to the rms fluctuations associated with the 
noise 



(a) Conjugate point imaging 

(b) Conjugate line imaging (c) Conjugate plane imaging 

•-^ 

(d) Conjugate line-point imaging (e) Conjugate plane-point imaging 
Figure 1.   Imager configurations 

V, Antenna 

IF 
amplifier 

Square-lavy. 
detector Integrator ADC Filter Mixer 

Local 

Oscillator 

Figure 2.   Block diagram of the heterodyne system 



— -     <p>    = <p> 11) 
N     7< (AP)2 >      SPBENB ' 

where SP is the power spectral density of the noise and BENB is the equivalent noise bandwidth at that point 
in the sensor. 

Square-Law detectors: 

A square-law detector produces an output proportional to its square 

Xout = AX2
n = TZPabs (2) 

For our detectors Xout is usually a voltage, Pabs is the power absorbed by the detector, and 11 is the detector 
responsivity in units of V/W. Assuming that the input noise to the detector has white noise spectrum and is 
unrelated to the signal, the SNR at the output of the detector is related to the SNR at the input by 

SNRnu = SNIkJ^j (3) 

where Au is the signal (noise) bandwidth before detection and A/ is the signal (noise) bandwidth after detection. 
The bandwidth after detection A/, is determined by the low-pass filter/integrator following the detector. The 
integration time of the detector (also determined by the low-pass filter/integrator) is r = 1/(2A/), therefore the 
SNR relationship above can be expressed as 

SNRout = SNRinV7~Kv (4) 

Heterodyne conversion: 

For the heterodyne conversion the output signal (a voltage) is equal to the product of the input signal and 
local oscillator signal (LO) times a proportionality constant, A. Assuming sinusoidal signals (Xin = Bcos(uint) 
and XLO = Ccos(u>Lot) ), the output signal at the intermediate frequency (IF) which is the difference of the 
input signal frequency and LO frequency will be 

Xout — ABCcos(cjin — UILOY = 2rfJl\/PmcPLOCOS(uin - ujLo)t (5) 

where Pinc and PLO are the incident and LO powers, and r/ is the fraction of each that is absorbed (mixer 
efficiency). Then the output power at the IF frequency is given by 

Pout = DXZa - WivTiyPincPLocos^LJin - ujLO)t = 2D(VTl)2PincPLO (6) 

where D is the mixer-to-IF circuit matching factor accounting for mismatch between the mixer and IF load 
impedance and the bar represents time averages. Grouping mixer and detector related terms together (GmiX = 
2D~R.

2
PLO) , the IF power is rewritten as 

Pout = V GmixPinc (7) 

The noise consists in the fluctuations of the mixer output signal that are caused by quantum-mechanical 
fluctuations in the incident and LO signals. Since usually PLO ~^> Pine, the local oscillator noise will dominate 
and an upper limit on the noise (similar to direct detection noise, since the mixer is a direct detection detector 
with two arms) will be 

(AXlmt)
2 = 21l-(&PLo)2-^L (8) 

where Bj? is the IF bandwidth (equivalent to the after detection bandwidth) and Av is the bandwidth over 
which the mixer accepts radiation. The LO quantum-mechanical noise power is given by 

APLO = Vvh-VLoPLo(Av) (9) 



where h is Plank's constant and uLO = uio/ln. The noise will therefore be 

(AA'^t)2 = 2ft • 77 • h ■ VLOPLOBIF    . (10) 

or in terms of noise power 

AP^t = D(AXmt)* = 2DK-n-h- VLOPLOBIF = Gmixr} ■ h■ vLOBIF (11) 

The SNR after the heterodyne conversion will be 

_  1        — °"'    — *!  Gmix Pine _ VPjnc 
NJ IF     &P<mt     Omixr] ■ h ■ VLOBIF     h. ■ VLOBIF 

(12) 

Electrical noise on heterodyne mixers: 

The electrical noise introduced by the IF electronics is accounted for by adding a noise rms term to the IF 
noise. We call the resulting noise the heterodyne noise and the resulting SNR the heterodyne SNR 

N
/HET     APmt + V/(AP/F_e)2      GmixV ■ h ■ VLOBlF + J(APIF_t)

2 

The electrical noise term, J(AP[p  e)
2> will be expressed in terms of the mixer noise equivalent power (NEP). 

The NEP is found by setting the SNR of the system to unity and solving for the incident power, therefore 

h-VjoBip       yi&PiF   e)2 

NEPHET = Pine = L°    IF + V ' (14) 
V r)2Gmix 

The specific NEP (NEP per unit bandwidth) is obtained by dividing the NEP by the signal (noise) bandwidth 

, _NEPHET    _h-uLO        ^(±PlF_e)2 

NEPHET - —— - —— +  v2GmixBiF (15) 

The first term to the right of the equation is due to the quantum-mechanical noise of the mixer and the second 
term is due to the electrical noise. If the electrical noise is much larger than the quantum-mechanical noise 
and the electrical noise is all white Gaussian noise (AWGN), the specific heterodyne NEP reduces to the mixer 
limited value 

y/(AP7f_e)
2 

NEPHBT « NEPmixer = ^3- =— (16) 
V ^mix&IF 

therefore we can solve for the electric noise rms term 

J(APIF_e)2 = v2GmixBIF ■ NEPmixer (17) 

The heterodyne SNR of Equation 13 is then rewritten as 

S_\ _  V G-mixPin  _  V      Pin 
N) HET ~ °™*V ■ h ■ VLOBIF + v2GmixBiF ■ NEPmixer ~ h ■ uLO + v • NEPmixcr ' BIF 

From this equation we also obtain the specific heterodyne NEP as a function of the specific mixer NEP 

(18) 

NEPHET = ^-^ + NEPmixcr (19) 



This form of the specific heterodyne NEP is convenient because it is used to define the receiver noise temperature 
which is usually specified by the manufacturer of the receiver. The receiver noise temperature is also known as 
noise-equivalent temperature (NET) 

NETHET = t^VL = _L (*jp + NEPmix^ (20) 

where kg is the Boltzmann constant. Given the receiver noise temperature, NEP'mixer can be calculated and 
then {jj)HET can be obtained. For example for our 640GHz system, vLO = 319GHz, NETHET = 3000K, 
NEPmix„ = 4.12 xlO-*[W}. 

Heterodyne detection with Schottky diode mixers: 

The SNR after the heterodyne conversion including the contribution of the mixer electrical noise is given by 
Equation 18. Each term (signal in the numerator and noise in the denominator) is multiplied by the gain of the 
entire IF amplifier chain GjF, and the responsivity of the square law detector 7?.£>j,that is used to detect the 
amplified IF signal . The relationship of the SNRs before and after detection for square law detectors is given 
by Equation 3 and is restated here with the appropriate subscripts 

SNRAD = SNRBD]I^- (21) 

where the subscript "BD" stands for "before detection" and the subscript "AD" stands for "after detection". In 
our case BBD is BjF, and BAD is the bandwidth of the integrator,A/, after the square law detector. The SNR 
after detection then becomes 

CNR        _  772^£nG/FGmix-Pin       BrF 
AD     nD,{GIFGmixr,-h-vLoBiF + r1*GIFGmixBIF-NEPmixer}y2Af l    > 

SNRAD~ n-h-vJw-NEPmixtT{2KTBTF 
(23) 

Therefore the heterodyne detection the SNR is directly proportional to the incident power and inversely related 
to the square root of the detection bandwidth, A/. In terms of incident power and integration time the detected 
SNR is 

SNRAD = {—    ^  JX\ x Piri x V? (24) 

where the integration time is given by T = 1/(2A/). 

4. INCIDENT POWER 

Now that the SNR dependence on the incident power and integration time has been stated, we analyze the amount 
of incident power on the detectors of each imager configuration. This analysis is simplified by introducing the 
concept of spatial modes. The number of spatial modes, MS/DI of the source or detector element is defined as 
the ratio of squares of the sensor (including optics) field of view (FOVsensor) to the source/detector element 
instantaneous field of view (IFOVS/D)\ equivalently, the ratio of the solid angles. The receiver and transmitter 
might also include optics or other components. 

For conjugate point imaging, source and detector element number of modes is 

/ FOVs^sor \2     ( FOVscnsor N 

This signifies that the source is projected over the region of interest, and that region of interest is imaged by the 
detector element. 



For conjugate line imaging 
M-(^lr)2=i (26) 

MD = (F^n
r
sor)   = n (27) fD=\lFÖVh 

where n is defined as the ratio of the desired linear image size (in the image plane) to the square root of the 
receiving antenna effective area (assuming a square antenna aperture). The effective area of an aperture antenna 
can be less than or equal to the physical area of the antenna aperture.2 We can use the upper limit (max 
fill factor 100%) and assume the effective and physical areas to be equal. This can also be interpreted as the 
number of pixels in the linear direction for 100% fill factor. The number source modes is again one because the 
illumination source in this case is a line segment and is projected over the region of interest. The number of 
detector element modes however is n because each of the detector elements only images a fraction of the line 
segment. 

For conjugate plane imaging the reasoning is similar except that each detector element only images 1/n2 part 
of the image 

Ms = (
F°^°e™°r)   = 1 (28) V   IFOVs 

(FOVsensor \ 

"■"{timL]-'' (29) 

where the image is assumed to be square. 

For conjugate line-point imaging we have 

MD=\-1FöV^) =T (31) 

where fr is the mask aperture fill ratio defined previously, usually a value less than one. The mask aperture 
fill ratio represents the fraction of the detector aperture that is transmissive for any pattern. Depending on the 
mask configuration, practical values for this constant range between 1/n2 and 0.7. For this case the detector 
element is dependent only on the fill ratio because the image of the illuminated object region is formed on the 
detector aperture which is then masked with a fill ratio fr. For conjugate plane-point imaging we also have the 
same relationships. 

The number of spatial modes for the source is one (Ms = 1) in all the configurations because it is assumed 
that the source power is perfectly projected on the target by the optical system, ignoring diffraction effects. If 
diffraction effects are accounted for, the number of spatial modes becomes larger than one. The factor of spatial 
mode increase depends on the F# of the system's optical system and the area of the illuminated target space. As 
the F# increases, the spatial mode number increases; illumination projected onto the target is not as selective 
and the imaged illumination falls outside the aperture of the detector. As the illuminated area increases, the 
spatial mode number approaches one; in this case the blurred edge to total illuminated area ratio decreases as 
the area increases. Therefore, accounting for diffraction affects the conjugate point imaging configuration more 
than the others. For the purposes of the following analysis we will initially ignore diffraction because its effect is 
usually less than an order of magnitude; but we will pick up the discussion when the various configurations are 
compared in Section 6. 

The relationship between source power and incident power on the detector is calculated using the Friis formula 
found in many books on radar systems or antennas.2 Because the source is coupled to an optical system and it is 
assumed that the optical aperture and source antenna beam width are matched, all the power, attenuated by the 
atmospheric loss coefficient (r(r)) and the reflectivity or transmission of the optics (aoptics), is projected on the 



target. This is true in all of the configurations. If the target is assumed larger than its illuminated sections, the 
reflected power will be equal to the power density on the target times the radar cross section of the target section 
and attenuated by the reflectivity of the target {Rrarget)- For simplicity, and since the analysis is relative, we 
assume that the target radar cross-section is equal to the illuminated target area, and any losses associated with 
target orientation or roughness are absorbed into the reflectivity coefficient. The power reflected by the target 
will be: 

PTarget = &OpticsT{r)RTargetPsource (32) 

The power collected by the optical aperture is then the power density at the aperture due to the reflecting 
target (again attenuated by the atmosphere), multiplied by the physical area of the optical aperture {Aopucs)- 
It is assumed that the optical aperture is large with respect to wavelength and matched to the receiving antenna. 
The power collected by the optics is then projected in the image plane, and the power integrated across the 
image plane is 

p _       PTargetT (r)Aoptic3 CtOptici 

R-TargetPsourctT   (r)a0pticsApptics . 
^imape     - JJ^J (M) 

The power incident on the receiving antenna will be a function of the power in the image plane and the spatial 
mode number of each configuration 

P™ = iSts (34) 

5. INTEGRATION TIME 

Integration time for the scanning configurations is a function of the picture elements (pixels) required for the 
image. The number of pixels may or may not be equal to the number of spatial modes. For staring configurations 
integration time is independent of the number of pixels. Image frame rate affects both staring and scanning 
systems. 

For conjugate point imaging the integration time will be 

where F is the frame rate in Hz, N2 is the number of pixels per image or the total number of measurements per 
image, 7 is the pixel oversampling factor, and T is a scanning delay. The oversampling factor is usually greater 
or equal to one. 

For conjugate line imaging the integration time will be 

T = IT^—Ü - T (36) F X-yN v    ' 

where it is assumed that the pixelated images will be square. 

For conjugate plane imaging the integration time will be 

For conjugate line-point imaging and conjugate plane-point imaging the integration time will be the same 
except that the scanning delay terms might be different 

r = -gr-^-2 - T (38) 
F x N2 

For these configurations however, N2 is also interpreted as the number of measurements which can be less than 
the number of image pixels. 

Depending on the implementation of each imaging technique the number of image pixels or measurements, 
N2, and the number of effective antenna areas in the image plane, n2, may or may not be equal. 



Table 1.   Relative SNR expressions for each configuration 
Imaging configuration Relative SNR 

conjugate point imaging qhjn'           _     /         1               rp s^ "-Point ~ \f FxfrN)'       J 

conjugate line imaging SNR'Linc = ^-^ 

conjugate plane imaging SNR'Plane = # 

conjugate line-point imaging SNRLint_Point — fr V FxW1 r 
conjugate plane-point imaging SNRPlane-Point = fr V FxN» T 

6. RELATIVE SNR 

Given the dependence of the SNR on the incident power and integration time, and the expressions for those 
variables in terms of number of pixels, frame rate, and imager configuration, we define the relative SNR for each 
configuration. The relative SNR is the SNR after detection (given in Equation 24) normalized by all the common 
factors (common between imaging configurations) 

SNR = 
SNR Al) 

{„■h >h-vLOW-NEP'mix,r 

Using Equations 24 and 34 in 39 we can express the relative SNR as 

JQP. 

SNR = 
MD 

(39) 

(40) 

Using the detector mode number and integration time expressions derived previously we find the relative 
SNR expressions for each configuration. The expressions are shown in Table 1. 

An interesting observation is that conjugate plane-point and line-point imaging perform similarly (differing 
in the scan delays and mask fill factors). For typical values of F = 10Hz, n = 1.2N, T = 20% delay, fr = 0.5, 
and 7 = 1, we plot the relative SNRs as a function of the number of pixels in the linear direction, N. Figure 3a 
shows plots of the relative SNRs as given in Table 1. The units of this plot are arbitrary. The best performance is 
achieved by the conjugate point imaging. The next best performance is achieved by the conjugate line-point and 
conjugate plane-point systems. The conjugate line system follows and the worst performing system, in terms of 
SNR, is the conjugate plane system. These results confirm Grossman's result that active systems favor scanning 
systems with regard to sensitivity.3 The plots also show that the SNR decreases as the number of image pixels 
increases for a set frame rate. To compare the rate of decrease with respect to number of image pixels we plot the 
data from Figure 3a normalized by the relative SNR of the conjugate system. These plots are shown in Figure 
3b. The rate of decrease of the conjugate point, conjugate line-point, and conjugate plane-point is the same, 
while the other two systems suffer a faster decrease. This is expected as the relative SNR for the first group of 
systems depends only on the integration time while for the second group it depends on the integration time and 
number of pixels and modes. 

The conjugate line-point and plane point systems can also be used in a compressive sensing mode, where the 
number of measurements required to reconstruct an image can be a fraction of the number of pixels in the image. 
This is achieved if the measurements satisfy certain conditions and the image is sparse in some domain.4 The 
implication is that by decreasing the number of measurements we can account for the loss due to the mask fill 
ratio and achieve the relative SNR of the conjugate imaging configuration or better. Also, if diffraction effects 
are considered in the formulation of the mode equations in Section 4, the performance of the conjugate point 
system will decrease, possibly falling below that of the conjugate line-point and plane-point systems. However, 
as it is shown in the next section, these two systems suffer by additional noise that is introduced during the 
image reconstruction process. 
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Figure 3.   Relative SNR plots 

7. IMAGE RECONSTRUCTION "NOISE" 

The association of measurements with digitized pixels on a screen can be expressed mathematically as 

Mp + 7] = rh = m + r] (41) 

where M is a matrix that relates the digitized pixels contained in the vector p to the noisy measurements rh. The 
noisy measurements are composed of the signal m and noise 77. The matrix M is called the measurement matrix 
and is usually calculated based on assumptions on the imaging system. For example, for the conjugate point, 
line, and plane systems the measurement matrix can resemble a diagonal matrix that may or may not model 
the point spread function of the optical system. For the conjugate line-point and plane point the measurement 
matrix will depend on the mask patterns, the point spread function, and possibly other mathematical models of 
other optical components in the system. Recall from the description of the systems in Section 2 that the mask 
patterns are used to implement the spatial-temporal varying integration aperture of the detector. The unknown 
pixel values are obtained by solving Equation 41. In the presence of noise however, only an approximate solution, 
p, can be obtained because the noiseless measurement is not available. Also, the problem becomes ill-conditioned. 
One method for finding the approximate solution is the regularized least squares5 

P = MTM + J^iHfHi M rh = R(/*i)m (42) 

where y.i are regularization parameters, H* are linear operators on the solution, and the superscript T denotes 
the matrix transpose. Borrowing notation from Bertero,5 the resulting matrix multiplication and additions are 
all grouped together into R(M0 for notational ease. In the absence of any regularization R(yUj = 0) = M-1. 
The linear operators Hj are modeled after a priori knowledge on the solution. For example, if the minimal norm 
solution is desired the linear operator is the identity matrix; if the solution is smooth the linear operator could 
be the Laplacian so that the sharp transitions are minimized. When constructing the linear operators one must 
keep in mind the arrangement of the pixel values in the vector p. 

From Equations 41 and 42 we can write the approximate solution in terms of a noiseless approximation term 
and a propagated noise term 

p = R(^)m + B.(jü)r) (43) 

In the absence of noise and regularization the approximate solution reaches the exact solution 

lim 
+0, m- 

R(/ij)m + R(/*i)i7 = M  1m = p (44) 



The exact solution is defined by Equation 44 and should be interpreted as the "model limited" reconstruction of 
the image plane, not the object plane. The term "model limited" refers to the fidelity of the measurement model 
represented by the measurement matrix M. With the approximate and exact reconstructions defined, we can 
express the reconstruction error t as 

£      =     p-p 

e    =    (R(jj.i)m-p) + R(^i)r1 (45) 

The relative reconstruction error is a more useful quantity and it is given as 

RRE-M (46) 

For the regularized least squares solution, the relative reconstruction error depends on the detector noise, r), and 
on the regularization parameters, IH- If the image plane is illuminated by a constant intensity the value of the 
relative reconstruction error can be related to the per pixel signal to noise ratio (SNRp). The relationship is 
given by 

SNRp = —T (47) 
(RRE)2 

The reconstruction error of Equation 45 is composed of two terms, the approximation error (R(^j)m - p) 
and the noise propagation (R(/XJ)»7). Expanding R(^) as in Equation 42, one observes that the approximation 
error is directly related to the regularization parameters and the noise propagation term is inversely related to 
the regularization parameters. When the measurement matrix is only mildly ill-conditioned and the regular- 
ization parameters are small, the noise propagation term dominates the reconstruction error.5 For small pixel 
count images (64x64) high regularization is not desired as it leads to blur spanning several pixels. Therefore, 
practical measurement matrices have to require only mild regularization. In this case the reconstruction error is 

■approximated by 
i = R{JH)TI (48.) 

The noise in Equation 48 is the detector noise considered in Section 3. We define the reconstruction noise gain 
HS 

Gn=m^ (49) 
IMI2 

As defined, the reconstruction noise gain is independent of the noise level and can be computed simply by 
generating all white Gaussian noise of any variance. If the pixel count is not large however, the average of several 
noise realizations might be necessary. 

In a similar manner to the reconstruction noise gain we define the reconstruction signal gain 

HI2 

where m is the noiseless signal. Unlike G^ the reconstruction signal gain is dependent on the signal because R(/^i) 
tends to filter the spatial frequency components of the signal by different amounts. Also, if the encoding mask 
is not balanced, R(/ij) might decode the measurements with different gains. An example of balanced encoding 
is the Hadamard mask.6 To circumvent this we propose using a gain range rather than a single gain value. One 
limit of the gain is calculated for a uniform image p (low spatial frequency, low sparsity) and the other for a one 
pixel wide impulse image (high frequency limit, high sparsity). Using the noise gain and the signal gain range 
we can relate the detector noise (SNRAD) to the per pixel SNR range (SNRpp) 

SNRAD _   G„ 
SNRPR      GSR 

(51) 

The gain ratio approximates the ratio of SNRs defined by Equations 24 and 47 as long as the detector noise is 
the main contributor of the reconstruction error. 



For the 64x64 pixel conjugate plane-point system that we have implemented and demonstrated,7,8 the SNR 
gain ratio ranges from 2 x 106 for the low sparsity image, to 2 x 103 for the high sparsity image. For the 32x32 
pixel version of the same imager the SNR gain ratio ranges from 6 x 104 to 3 x 102. For the 64x1 line imager 
version of the device the SNR gain ranges between 440 and 20. 

The 32x32 pixel imager performs better than the 64x64, and the line imager performs significantly better 
than the two dimensional imagers. The reason is simply the degree of dependence between measurements. The 
measurement dependence increases with the number of pixels for a given imager physical dimension. Another 
important observation is that reconstructions for sparse images have significantly (orders of magnitude) lower 
gain ratio than the reconstructions for non-sparse images. For more details on our imager the reader can refer 
to our previous publications.7'8 

Our imager can be modified to implement a Simplex Code Mask (SCM). The measurement matrix that 
results from an SCM consists of l's and 0's. According to Harwit6 SCM make the best masks when entries 0 
and 1 can be used. For a 64x1 imager with SCM the gain ratio ranges from 64 to 2 without any regularization, 
and can be even lower if regularization is used. 

The analysis presented in this section applies only to the regularized least squares method of image recon- 
struction. Other reconstruction methods, especially non-linear, exist that provide better immunity to noise. 
The gain ratio numbers presented above only pertain to the current implementation of our imager and we are 
investigating methods of breaking the dependence between measurements that results in high noise gain. 

8. CONCLUSIONS 

In this article, a series of imaging configurations for active sensors has been defined. The SNR for each pixel has 
been calculated. In some of the schemes this SNR differs from the detector SNR due to the necessity of significant 
computational reconstruction of the image. The noise associated with linear methods of reconstruction has been 
included in this analysis. The main conclusion of this research is that non-traditional imaging schemes involving 
coded apertures and computational reconstruction may provide better image quality if reconstruction methods 
that are robust in the presence of noise can be achieved. This is a very active area of research in computational 
optics and compressive imaging and is a focus of our ongoing research in this area at the University of Memphis. 
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Compressive Sensing for a Sub-millimeter Wave Single Pixel 
Imager 

Imama Noor, Orges Furxhi, and Eddie L. Jacobs 

ABSTRACT 
In this paper we demonstrate the use of compressive sensing to form an image with an image plane random 
mask and a single pixel sub-millimeter wave receiver. This type of imaging device is a practical solution in 
domains where focal plane arrays do not exist. The imager consists of a heterodyne source and receiver pah', 
image, forming optics, a spatially selective mask, and data acquisition and post-processing hardware and software. 
The spatially selective mask modulates the signal measured by the receiver which is then sampled by an analog 
to digital converter and is post-processed to reconstruct the image. The spatially selective mask can produce 
image samples at full video rates. The post-processing used for this research consists of a sparseness inducing 
transformation on the measurements and application of compressive sensing reconstruction algorithms. We 
show several images acquired and reconstructed using this system. While the data acquisition of this system is 
real time, the processing currently must be done offline. We comment on the performance improvement using 
compressive sensing methods. 

Keywords: Compressive sensing, submillimeter wave imaging, dictionary learning, single pixel imager 

1. INTRODUCTION 

Compressive sensing (CS) has been an active research area recently. It exploits the low information rate hidden in 
a signal. Most signals are sparse hi a specific domain. CS uses this hidden information to reconstruct a signal from 
far less samples than required by a conventional algoritlmi. There are two main constraints imposed for an exact 
reconstruction from under sampled data: the sparsity of the signal and the incoherence of the measurement and 
compression matrices.1 The number of non zero coefficients in a signal dictates the sparsity index. For an exact 
reconstruction the number of samples should be approximately four times the sparsity index1 and the sparsity 
basis should be incoherent with the measurement matrix. In addition, the measurement matrix should follow the 
Restricted Isometric Property (RIP) to ensure that a reduction in the number of measurements does not have 
a significant effect on the information content. This implies that the reduction of dimensions of measurement 
matrix preserves the distances between the non zero planes of the sparse vector.2 If a sampling process satisfies 
these conditions, this problem can be cast into Basis Pursuit Denoising (BPDN) or Lasso. There are different 
optimization algorithms available to solve BPDN and Lasso. Some widely used algorithms are Dantzig Selector, 
BPDN and greedy algorithms.3-5 These algorithms are proven to converge and are tractable.6 

If the measurement matrix follows the properties mentioned above, then we can use CS methods for re- 
construction by using fewer measurements. To reconstruct an undersampled signal using CS theory, we need 
knowledge of the sparsifying basis for SMMW images. For this purpose we used an online dictionary learning 
algoritlmi to find a sparsity basis in which the signal can be represented by fewer atoms and is also incoherent 
with the measurement matrix. 

hi this work, we consider the problem of estimating an undersampled sub-millimeter wave hue image. Earlier 
methods solved an inverse problem for signal reconstruction which requires as many or more measurements than 
the signal dimension. We address the issue of reconstruction from less measurements than required by least 
square or inverse solution and show that the number of measurements required for optimum reconstruction is 
less than the dimensions of the signal for a specific error bound. 

The measurements obtained are transformed by the sparsity matrix and along with the product of the 
measurement matrix and sparsity basis are passed to the reconstruction algorithm. We cast the problem as a 
basis pursuit optimization. The basis pursuit optimization estimates a solution to a set of underdetermined linear 
Equations. If the objective function used is the Zi norm minimization and the RIP is satisfied, we are guaranteed 
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to find the sparsest solution consistent with the measurements.7 This problem falls into the convex optimization 
category, ensuring the solution is unique and tractable. As mentioned above there are a lot of libraries available 
to solve convex optimization problems. We used disciplined convex optimization CVX modeling system to 
implement BP optimization.8 CVX uses a base library of convex functions and sets. The solution obtained is an 
estimate of the coefficients in the sparse basis. The actual signal is obtained by transforming the coefficients back 
to the spatial domain. We demonstrate this method by reconstructing images from simulations and experimental 
measurements. 

2. THEORETICAL BACKGROUND 

2.1 Compressive sensing 

CS is a relatively new approach that provides a mechanism to sample a signal below Nyquist sampling.2, nCS 
imposes some conditions on the characteristics of the signal under consideration and guarantees a reconstruction 
from fewer samples than required for conventional reconstruction. Consider a signal x to be reconstructed from 
the measurements y. We can express the relationship as 

y = Ax + uj (1) 

where y is the measurement vector of length k, x is the unknown signal to be reconstructed with n dimensions. 
The matrix A is the measurement matrix and u> is Gaussian noise (0, a). We consider the under determined 
problem where k«n. A signal has to be sparse in a particular domain to get an exact reconstruction using CS 
methodology. This implies we should be able to represent the signal in that domain by a linear combination of 
only a few atoms/columns of a dictionary. For instance if a; is sparse in a specific domain <£then 

x = 4>z (2) 

y = A<j)z + cj (3) 

where the vector z is a sparse vector with very few non zero elements. The sparsity index is the number of 
nonzero elements in the coefficient vector z. If S is the sparsity index of a signal in a particular dictionary and 
n is the dimension of the signal then the number of measurement required to reconstruct x should obey2'12 

k > CSlog{n) (4) 

where C is a positive constant.2It, depends on the coherence measure of measurement matrix and the sparsity 
basis. The coherence measure is defined as follows. If o4 and Vv represent the columns of A and <j> respectively 
then2 

y. = —^maxi^ij^n |(OJ, ipj)\ (5) 

The matrices are incoherent if [i satisfies the inequality 

(x < 1 (6) 

To reconstruct from fewer samples, we need to make measurements such that they are incoherent with the 
sparsity basis matrix and the product of the measurement matrix with the sparsity basis matrix should satisfy 
the RIP. The RIP as given by Candes8 is satisfied if 

(i-*s)MIJ<||.A*|l2<(i + fc)IMi; (7) 
where the product A<j> is the product of the measurement matrix with the sparsity basis matrix and z is any 
sparse vector.  The finite constant 5s is the restricted isometry constant and is given by Candes.8  The RIP 



ensures that the transformation A<j> preserves the distances between the non zero planes of sparse vectors. Said 
another way, the satisfaction of the RTF is equivalent to the requirement that the largest eigenvalue of A<j>(A<j>)T 

lies in the interval [1 + S„ 1 - <$,]. 

If the incoherence and the PUP are satisfied we can use CS reconstruction algorithms for solving this under- 
determined problem of linear Equations. As mentioned before different optimization techniques such as Dantzig 
selector, Lasso, or BP can be used for estimating a solution. We formulate the problem as BP and opthnize it 
using Self Dual Minimization (SeDuMi).1'1 According to CS Theory if we minimize the li norm, it gives us the 
sparsest unique solution to this convex problem.13 

minimize \\x\\i subject toy = Ax (8) 

If we decompose x into <j>z and minimize the l± norm subjected to the constraints below, then 

minimize \\z\\\ subject toy = A<j>z (9) 

We show that solving this optimization problem requires less measurements than the former problem as it 
decreases the sparsity index by including prior information about the signal structure. The signal x can be 
recovered using Equation 2. 

In the case of noisy measurements we formulate the problem as BPDN 

minimize \\x\\i subject to \\y — Ax\\2 <£ (10) 

If x = <f>z then 

minimize \\z\\i subject to \\y — A(f>z\\2 < £ (11) 

where e > a and a is the noise variance. The signal can be recovered by taking the inverse transform of 
thresholded coefficients from Equation 2. In this paper we take the transform directly. 

2.2 Dictionary learning 

According to CS theory the signal has to be sparse in a specific domain for exact reconstruction. There are many 
ways to find a sparsity basis wliich can represent the signal as a linear combination of a few atoms. In this paper 
we used an online learning approach for sparse coding.9 The algorithm considers a finite training set of signals 
and optimizes an empirical cost function 

' /«(*)-;;£<(*<>*) (12) 

In Equation 12, cf> is the dictionary in Rm*n, each column of <j> is called an atom which are the sparse basis vectors, 
X{ are the training signals in Rmxk, and / is the loss function which is small when <f> represent xt using fewer 
sparse basis vectors or atoms. The number of training signals k is typically large and each signal is represented 
by only a few columns of </>. This approach is fast and guaranteed to converge.9 
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3. METHODOLOGY 

The sub-millimeter wave imager consists of a heterodyne source and receiver pair, image forming optics, a spa- 
tial]}' selective mask, and data acquisition and post-processing hardware and software. The compressive sensing 
measurements are formed by scanning the image with the spatially selective mask. The receiver measures the 
energy that is transmitted through the spatially selective mask for each pattern of the mask. Those measure- 
ments are registered with the mask patterns and a system of Equation describing the measurements in terms 
of the mask patterns is formulated. This system of Equations is represented hi matrix form by Equation 1. A 
conceptual sketch of for the spatially selective mask considered in this paper is shown in Figure 1. Here we 
point out only some parameters of interest for the spatially selective mask used. The mask consists of a spinning 
disk with holes along a constant radius. 10The holes are of the same size and are placed at random spacings as 
shown in the figure. We treat the hole diameter and maximum spacings as design parameters and investigate the 
optimum combination of the two. 

A measurement matrix resulting from the spatially selective mask is shown in Figure 2. The hole diameter and 
spacing affect the matrix in the following way. The thickness of diagonals is related to the diameter of holes and 
the distance between the diagonals is related to the spacing between holes. We optimized the spacing and diameter 
of holes over a range of permissible values by minimizing the mean square error calculated from the reconstruction. 
The optimum value of diameter and spacing was used for further computations and implementation. 

Figure 1.   Conceptual diagram of spatial mask and receiver 

Sub-millimeter wave images from this system can be well represented by a sum of Gaussians due to then- 
inherent blur, A linear combination from a set of basis functions spanning the entire space can be used to 
represent any signal. To build this basis for the signals of interest we acquired the image of a point source and 
translated it over the whole spatial range. Then the set of signals were fed to a dictionary learning algorithm 
to obtain a transformation.9 The parameters for algorithm were chosen empirically. The dictionary learning 
algorithm enforced mininium /j norm to obtain a sparse representation.9 We use the learned dictionary as a 
sparcifying basis. As mentioned earlier in order to reconstruct a signal from an optimal number of measurements 
the dictionary, or sparcifying matrix and the measurement matrix should be incoherent. The sum of columns of 
the gram matrix given in Equation 5 for both matrices was found to be 0.36, which is in range of Equation 6. 
This implies the incoherence of these, two matrices. 
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Figure 2.   a. 30x64 Matrix M, b. A 64 x 64 Dictionary D, c. Product of D and M 



  

Our problem is expressed as aii underdctermincd system of linear Equations given by Equation 1. We cast the 
problem as BP and use the SeDuMi solver for optimization. SeDuMi was chosen due to its lower computation 
time required and consistent performance compared to other available algorithms. For reconstructions from 
noiseless measurements we solve by using equality constraints and the problem is formulated by Equation 9. In 
the case of reconstructions from noisy measurements we first estimate the value of an error bound c and formulate 
the problem as in Equation 11. The value of the error bound is kept greater than the noise variance. For a fixed 
number of measurements we estimated optimum e which minimized the MSE of the reconstructed signal. The 
optimum value of error bound for a specific number of measurements was used for noisy reconstruction. 

4. SIMULATION AND EXPERIMENTAL RESULTS AND DISCUSSION 

We simulated 90 signals of length 64\1 and a 64x64 measurement matrix. Ninety measurement vectors of 
size 64x1 were calculated. A 64x64 dictionary was obtained by training the 64 samples of the point spread 
functions spanning the whole space shown in Figure 2b. The 90 signals were then reconstructed using 30 
noiseless measurements and a truncated measurement matrix. The optimum hole size and spacing was found 
by minimizing MSE of the reconstruction over a range of permissible values of hole sizes and maximum spacing. 
Figure 3 shows the variation of MSE with hole diameter and maximum spacing. 

MSE vt Hoi» DiamalaT ind Manimuni Spicing 
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Figure 3.   MSE vs Hole Diameter and Maximum spacing in rn™ 

We simulated noisy measiuernents with a = 0.2 and, using the previous residts for the optimized hole size and 
spacing, we minimized the MSE of the reconstruction over a range of error bound e starting from the minimum 
e = a . The error bound against least MSE was found to be 1.2 which is used in further analysis. Figure4 shows 
the MSE plotted against a range of error bound for a specific number of measurements. 
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Figure 4.   Reconstruction optimization and analysis a. MSE vs Error bound b. MSE vs Measurements 
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Figure 5. Simulated signal 90 (64x1) vectors a. Object M b. Reconstruction using in = 30 c. Reconstruction using 
60 

m = 

Fig. 4b shows the mean square error plot against number of measurements for a fixed e = 1.2. We also 
compare the MSE with and without the aid of a dictionary for reconstruction. The error using the dictionary is 
lower than without the dictionary when smaller numbers of measurements have been used. After the specified 
number of measurements is passed the error starts to increase. The specified number of measurements in this 
case were 30 which shows optimum reconstruction can be achieved by less than half the number of measurements 
required by a conventional algorithm for a given error bound. Moreover this optimum reconstruction is achieved 
earlier with the aid of a dictionary in the reconstruction process. Figure 5a shows a simulated signal. Figures 
5b & 5c shows the reconstruction using 30 and 60 measurements respectively. As we increase the number of 
measurements in the presence of noise, quality of reconstruction degrades. 

We gathered real data using the imaging device for the "M" object shown in Figure 7a . The value of the 
optimum error bound e is calculated by minimizing MSE over a range of e for a specific number of measurements 
as shown in Figure 6a 
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Figure 6. Reconstruction, optimization and analysis of real data a. MSE vs Error bound b. MSE vs no. of Measurements 
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(a) (b) 
Figure 7.   Real Data 191 (64x1) vectors a. Object M, b. Reconstruction using m = 30 

The mean square error increases after exceeding the specific number of measurements as shown in Figure 
6b. The error is lower initially when the dictionary is used in the reconstruction process before the specified 
number of measurements. Figure 7b shows the reconstructed "M" from 30 measurements for each vector.The 
reconstruction from GO measurements produced no solution. The. results were consistent with simulations. 

5. CONCLUSION AND FUTURE WORK 

Compressed sensing provides the capability of reconstructing an image using fewer measurements than would 
otherwise be required. It does this by pushing the compression and encoding processes into the measurement 
process itself. This makes it attractive for imaging devices that need to reproduce a lot of pixels with very few 
detectors. It should be noted that SMMW imagers do not strictly fall into this category. While it is true that 
focal plane array detectors do not exist in this regime it is also true that relatively few pixels are needed for most 
security applications. This is due to the wavelengths involved, the targets of interest (concealed weapons), and 
the ranges involved (a few to a hundred meters). Under these conditions, images will never be terribly large. 
However, there are other advantages to using compressive sensing reconstruction. 

The SMMW imager described in this paper and other papers by the authors currently makes the same 
number of measurements as the desired image size. The image size and the frame rate determine the sampling 
rate or data acquisition time of the imager. Since, for a given image size, fewer measurements are required by 
compressive sensing reconstruction methods we can use the acquisition tune that would have been used for the 
remaining pixels for further detector integration to reduce noise or to increase the frame rate of the imager. 

The imager described here could be improved by improving the RIP property of the measurement matrix. 
One way to do this is to add another degree of freedom to the measurements device. By letting the holes vary not 
only in their placement in angle along a constant radius but to vary about that radius, measurement matrices 
with improved properties may be obtained and produce better reconstructions. 

On the processing side, the quality of the images can be enhanced by thresholding the coefficients before 
transforming them back to the spatial domain. We are currently exploring methods to find the optimum threshold 
level. Also there is room to improve the role of the sparsity basis so that it is more robust to noise in the signal 
and other variations. Sparsity in the third dimension (time) can also be explored to further reduce the number 
of required samples. 
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ABSTRACT 

In the absence of detector arrays, a single pixel coupled with a spatially selective mask has been shown to 
be a practical solution to imaging problems in the terahertz and sub-millimeter wave domains. In this paper 
we demonstrate real-time two-dimensional imager for sub-millimeter waves that is based on a spatially selective 
image plane mask. The imager consists of a heterodyne source and receiver pair, image forming optics, a spatially 
selective mask, data acquisition hardware, and image reconstruction software. The optics form an image onto 
the spatially selective mask and linear measurements of the image are made. The mask must be designed 
to ensure maximum transmission, measurement linearity, and measurement to measurement independence and 
our design parameters are presented. Once enough linearly independent measurements are made, the image 
is reconstructed by solving a system of linear equations that is generated from the mask patterns and the 
corresponding measurements. We show that for image sizes envisioned for many current applications, this image 
reconstruction technique is computationally efficient and can be implemented in real time. We present images 
collected using this system, discuss the results, and discuss other applications for some components of the imager. 

Keywords: Sub-millimeter waves, terahertz, imaging, spatial light modulator, spatially selective mask, com- 
pressive sensing, multi-mode imaging, spectrometry 

1. INTRODUCTION 

Sub-millimeter wave imaging is a useful tool for military and security applications. Sub-millimeter waves can 
penetrate through many man-made materials and provide high resolution images at stand-off distances while 
still not suffering tremendously from atmospheric attenuation.1,2 However, the current state of the art is limited 
to target space scanning systems that require complicated mechanical mechanisms and hence tend to be bulky, 
heavy, and not portable. These systems usually make use of a single pixel detector that offers very high signal to 
noise levels due to the maturity of the technology. Other imaging methods, in particular two-dimensional, that 
perform well in other modalities such as interferometric arrays in the millimeter wave region3,4 or focal plane 
arrays in infrared and visible regimes, have yet to be demonstrated in the sub-millimeter wave regime. 

Awaiting the development of focal plane arrays for sub-millimeter wave imaging, other alternatives that ex- 
ploit the maturity of the single pixel detector need to be explored. We have focused our efforts on Spatial Light 
Modulators (SLM) for sub-millimeter waves. Spatial light modulators work in reflection mode or in transmission 
mode. Perhaps the most well known reflective SLM is the Texas Instruments Digital Micro-mirror Device (DMD) 
known for its use in the Pace University single pixel camera,5 or in most modern day projectors. An example of 
transmissive SLM are the Liquid Crystal Optical Modulators (LCOM) common in display applications. The un- 
availability of high power illumination sources in the sub-millimeter wave regime and the atmospheric absorption 
suggest special consideration for the efficiency of SLMs for sub-millimeter waves. In this respect, practical im- 
plementations of optical systems for SLMs, where the image plane is being modulated, favor transmission mode 
devices. The energy that passes through the SLM transmission mode device can be collected and channeled to 
the detector, whereas some of the energy reflected by the SLM reflection mode device will be diffracted away 
from the detector. 

°ofurxhi@memphis.edu,   eljacobs@memphis.edu, crwhewitt@memphis.edu 



An electronically controlled SLM for sub-millimeter waves would be ideal but unfortunately one suitable 
for imaging has not been developed yet. There have been some efforts to use metamaterials to develop an 
electronically controlled transmissive SLM6 but the modulation depth of that device did not exceed 40%, with a 
minimum transmission coefficient of 0.3 and maximum of 0.7. Higher modulation depths are preferred for most 
sub-millimeter wave imaging applications. We have developed a mechanically scanned SLM for sub-millimeter 
waves. Although a mechanically scanned system, our device has low mechanical complexity, provides high 
modulation levels and high scanning rates, and has low cost. At the core of this device is a rotating disk 
with holes that spins at a constant speed. The image is formed on one portion of the disk and it is selectively 
transmitted through the holes onto the receiver. Linear measurements are made on the image as the disk rotates. 
An image is reconstructed using the knowledge of the hole patterns and the measured signal from the receiver. 
We call this device a Spatially Selective Mask (SSM). 

We have previously presented the electromagnetic analysis and design of this device as well as a working 
example of a line SSM as part of a line imager.7,8 In this paper we describe and demonstrate a two-dimensional 
version of the device that is used to form 64x64 pixel visible light and sub-millimeter wave images. The visible 
light images are formed in transmission mode and the sub-millimeter wave images are formed in transmission 
mode and in stand-off reflection mode. In transmission mode the aperture of a object mask is projected onto the 
device and in stand-off mode the target is placed 10 meters away from the imager and an image of it is formed on 
the device through an optical system. The paper is organized as follows: Section 2 describes the device and the 
method of image measurement and reconstruction. In Section 3, we describe the experimental setups. We show 
and discuss the images collected with each setup in Section 4. In Section 5 we discuss further improvements to 
the device and additional uses of the SSM. Section 6 concludes the paper. 
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Figure 1. Conceptual drawing of the spatially selective mask placed in the image plane of the imaging system, 
arbitrary division of the imaging window into pixels. 

Insert: 

2. THE TWO-DIMENSIONAL SPATIALLY SELECTIVE MASK AND THE IMAGE 
RECONSTRUCTION METHOD 

A conceptual sketch of the SSM is shown in Figure. 1. The device is placed in the image plane of the imager and 
an image is formed over the imaging window. The image is scanned with a spinning disk that is patterned with 
holes. The detector is sampled continuously and each sample is registered with the corresponding pattern of 
holes in the imaging window at the time of the sample. When the required measurements are recorded, the image 
is reconstructed. The central component of the SSM is the spinning disk with holes located at random positions. 
The placement of the holes and their sizes depend on the largest imaging wavelength, Amai. Because of the 
assumptions of the image reconstruction method, the transmission of each hole must be unity and transmission 
from many holes must be linear. Electromagnetic analysis8 has shown that for a disk of thickness around three 
AmM the minimal hole radius should be greater than 1.4Amal and the minimal edge to edge separation between 
holes should be one AmaI. As long as the radius of the holes and the depth increase proportionally, transmission 



and linearity are preserved. Another component of importance is the collecting horn placed behind the imaging 
window and the disk. This collecting mechanism is necessary for coupling all of the energy that makes its way 
through the holes into the detector, from sub-millimeter wave frequencies to infrared frequencies a horn is 
preferred because of the low loss and cost, but for frequencies in the visible spectrum a lens can be used instead 
to focus the energy into the detector. An integrating sphere can also be used. The imaging window is another 
component. It is an aperture that limits the part of the disk where the image is formed and scanned. The size 
of the imaging window determines the physical size of the image. The motor spins the disk at a constant rate. 
For standard video rate imaging (30 frames per second) the disk should spin at 1800 rotations per minute. 

For reconstruction purposes, the imaging problem is posed as a linear system of equations and is presented 
in matrix notation   

Mp = m. (1) 

For an image of n x n pixels, the column vectors m, and p have dimensions n2 x 1 and the matrix M is a square 
matrix of dimensions n2 x n2. The vector p is composed of the values of the intensity of each image pixel. The 
vector m = ml + rj is composed of the values of each measurement and is called the measurement vector; m' is 
the noiseless measurement and rj is the measurement noise. The matrix M is called the measurement matrix 
and each of its rows encodes the pattern of holes over the imaging window for each measurement. Referring to 
the insert in Figure 1, each entry of each row of the measurement matrix is calculated as the fraction of the area 
of the corresponding pixel covered by holes. For instance, Mhi — 0.23, Mlj2 = 0.27 , Mi>3 = 0, and so on. The 
entries of the measurement matrix can also be interpreted as the contribution of each pixel to the measurement. 
The sizes of the pixels are arbitrary; therefore the imaging window can be divided into as many pixels as desired. 
However, as the number of pixels increases the probability that the rows of the measurement matrix remain 
linearly independent decreases. The linear independence of the rows of the measurement matrix is assumed in 
order to solve Equation 1. 

In constructing the measurement matrix in Equation 1 we make the following assumptions. Each measurement 
is collected as the pattern of holes in the imaging window is stationary. All the energy that passes through the 
holes is collected and measured by the detector. The measured energy is the sum of the energy passing through 
each hole. All of these assumptions are broken in the actual implementation. The disk is rotating at a constant 
speed and each measurement is collected as the disk rotates. The majority, but not all, of the energy that goes 
through the holes is collected and measured. The holes can be considered as radiators by the detector and the 
measured energy is not the same as the sum of the energies from each hole because of interference.9 However, 
in the current implementation the error or noise introduced because of these assumptions is overshadowed by 
the measurement noise. In Section 5, we discuss how some of the error introduced by our assumptions can be 
mitigated. 

Equation 1 can be solved simply by inverting the measurement matrix M and multiplying the result with 
the measurement vector m; however, the unique solution that is obtained is different from the desired vector p 
because of the measurement noise. In addition, the measurement matrix might be ill-conditioned which would 
augment that difference. To obtain the desirable solution many inverse imaging algorithms10 can be used to solve 
Equation 1, as well as compressive sensing methods.11 We use a closed form regularized least-squares method.10 

It provides an instantaneous solution and allows the inclusion of some a priori information about the solution in 
the form of regularization parameters and matrix operators. Although iterative solutions are more flexible and 
allow more a priori information to be used (an important example is the non-negativity constraint) they are slow 
to produce solutions with regard to video-rate imaging. 

The regularized least squares solution is written as 

1 -l 

M   m (2) 

where p' is the approximate solution, the superscript T denotes the matrix transpose, the regularization parameter 
a controls the degree of the minimization of the norm of the solution, the matrix operators Hi are linear operators 
on the solution p', and the regularization parameters ßi control the degree of minimization of the matrix vector 
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Figure 2.   Implementation of the SSM, front (left), and back (right) views. 

product Hi p'. The matrix operators Hi are used to enforce the a priori information on the solution. For instance, 
if we know a priori that the solution is smooth, we can minimize the first and second derivatives of the solution. 
In this case the matrices H~i are the Sobel or Prewitt (first order derivatives) and the Laplacian (second order 
derivative) operators.12 These are the matrix operators that we have implemented in this work. Because of the 
system optics and large wavelength, the images that are formed on the SSM are smooth. The regularization 
parameters can be optimized and several methods for doing this exist10 however, in the work presented here 
the regularization parameters were chosen ad-hoc to produce a satisfactory qualitative solution. The optimal 
regularization parameters as well as other matrix operators will be investigated in the future. 

The number of pixels in the image can be increased since the pixels are non-physical, however a 64 x 64 
pixel image is sufficient for most stand-off applications of interest. Assuming an F/l optical system with one 
meter aperture and a Rayleigh wavelength product 1.22A = 0.5 mm, the angular resolution of the imager is 
0.5milliradian. In object space at 100 meters away this translates to a 5 cm resolution spot. Assuming one pixel 
sampling for resolution spot (two per airy disk) a 64 x 64 pixel imager would image an object space area of 
3.2 x 3.2 meters square. This object space area is sufficient to scan a highway lane, a few human targets, the 
trunk of a tree, or a helicopter landing site. 

3. EXPERIMENTAL SETUPS 

The spatially selective device was implemented using parts of a 5.25 inch hard drive. One of the platters of the 
hard drive was used as the spinning disk. The radius of the holes and their minimal separation were designed 
for operation at 640GHz. A hole radius of 1mm and a minimal separation of 2 mm were chosen to guarantee 
unity transmission, linearity, the structural integrity of the disk, and the availability of standard tools. With 
these parameters as restrictions, a random pattern of 431 holes was generated and the holes were drilled on a 
CNC mill. The case of the hard drive was cut and modified for access to the disk and for easy mounting on 
the optical stages. The electronics of the motor driver were also modified so that the disk could be rotated at 
3000 rotations per minute (RPM). An emitter diode and phototransistor pair were placed in the proximity of 
the disk to register the measurement samples with the corresponding hole patterns in the imaging window. A 
34 mm x 34 mm imaging window aperture was machined on two slabs of aluminum and they were mounted to 
sandwich the disk. Figure 2 shows a picture of the front and back of the device with all the components described 
above labeled. 

The SSM device was used to form images in three different configurations. In the first configuration the device 
was paired with a visible light detector to form a visible light imager. Although this setup was intended to help 
debug of all the issues related to the device without concern for the sub-millimeter wave image formation and 
phenomenology (invisibility to the bare eye, specular nature of the active sub-millimeter wave imaging, optical 



alignments, etc), it shows the frequency independence of this device. A conceptual sketch and picture of the 
setup for visible light are shown in Figure 3. This imager works in transmission mode. A red laser source (400nm 
- 700nm) was collimated and was masked by object masks to form images over the imaging window. A lens was 
placed behind the disk and the imaging window to focus the energy into an N-Type Silicon PIN Photodetector. 
The optical path from the collecting lens to the photodetector was enclosed by a dark tube to eliminate stray 
light reaching the detector. The detector signal was amplified and then sampled using a 16-bit data acquisition 
card from Measurement Computing. For each revolution of the disk 5000 samples were recorded, triggered by 
the rotation sensor, and then were filtered in Matlab using a low pass filter. The disk was rotated at a constant 
rate of 50 rotations per second. We used 4096 consecutive measurements of the 5000 that were recorded to 
reconstruct a 64 x 64 pixel image using Equation 2. 
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Figure 3.   Visible light setup, sketch (left) and actual implementation (right). 

In the second configuration, the device was paired with the sub-millimeter wave receiver to form images in 
transmission mode. A sketch and picture of this setup are shown in Figure 4. We use a heterodyne source and 
receiver pair from Virgina Diodes. The source and receiver operate at 640 GHz. In this configuration, the 640 
GHz source is placed one meter in front of the device and is flood illuminating the imaging window. An object 
mask is placed right before the imaging window and the projected image is scanned by the spinning disk. The 
640 GHz receiver is placed behind the disk and measures the energy passing through the holes. The intermediate 
frequency (IF) of the receiver was down converted from 4.8 GHz to 2.2 GHz and this new IF was supplied to a 
spectrum analyzer. The spectrum analyzer was used to band-pass filter and amplify the signal. A time sweep of 
the signal triggered for each rotation was generated and the video output of the spectrum analyzer was sampled 
using a 16-bit data acquisition card from Measurement Computing. Here also 5000 samples are recorded per 
rotation as the disk rotates at 50 rotations per second and then the signal is low-pass filtered in Matlab and 4096 
consecutive samples are used to reconstruct a 64 x 64 pixel image using Equation 2. 

640GHz Source 

Figure 4.   Sub-millimeter wave setup in transmission mode, sketch (left) and actual implementation (right). 



In the third configuration, the device was paired with the sub-millimeter wave receiver to form images 
in stand-off mode. A sketch and picture of this setup are shown in Figure 5. The 640 GHz source is located 
approximately two meters from the target and flood illuminates it. The energy reflected by the target is collected 
by the imaging mirror (in the implementation the beam is folded by two flat mirrors) 10 meters away. This mirror 
is a section of an ellipsoid of rotation with one focus at one meter and the other at 10 meters. The image is 
formed on the one meter side. The system has an effective diameter of 0.3048 meters (12 inch), effective focal 
length of 0.9091 meters, resulting in a F# of 2.9826. The magnification of the system is 0.1, the depth of focus 
for coherent radiation is 0.01062 meters, and the depth of field for incoherent radiation is 1.0162 meters. The 
airy disk diameter is 3.75 millimeters for a wavelength of 468.43/xm, corresponding to the illumination frequency 
of 640 GHz. The imaging mirror forms an image of the target in the imaging window of the SSM. The image 
is then scanned by the spinning disk and the energy that goes through the holes is measured by the 640 GHz 
receiver. The same data collection setup as in the second configuration is used to sample the received signal and 
reconstruct a 64 x 64 image using Equation 2. 
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Figure 5.   Sub-millimeter wave setup in stand-off mode, sketch (top) and actual implementation (bottom) 

4. RESULTS 

For all three imager configurations the reconstruction was performed using Matlab software. The Matlab Data 
Acquisition Toolbox was used to acquire the data from the data acquisition device. Code was written to im- 
plement Equation 2 and to calculate the matrices therein. The disk is rotated at a rate of 50 rotations per 
second and therefore allows image formation at 50 frames per second (fps). However, the data acquisition speed 
of the current implementation is only 10 fps and when an image is reconstructed and displayed on the screen 
the image rate is 6 fps. These slower frame rates are due to the implementation in Matlab. On a laptop PC 
(processor: Intel(R) Core(TM)2 Duo CPU T6670 @ 2.2GHz), the data reconstruction step ( matriX|4094X4096] 
vector[4096 xr] product) in the current Matlab implementation takes only 30 milliseconds and the rest of the loop 



Figure 6. Targets for the imager configurations; (a) target mask used for the visible light and sub-millimeter wave trans- 
mission mode configurations, (b) target for the sub-millimeter wave stand-off mode configuration. 

(a) (b) (c) 

Figure 7. Image reconstructions from each configuration; (a) reconstruction from the visible light configuration, (b) re- 
construction from the sub-millimeter wave transmission mode configuration, (c) reconstruction from the sub-millimeter 
wave stand-off mode configuration. 

time is occupied by the data acquisition, image reshaping, filtering, and image display. All these steps can be 
made faster using a compiled implementation and dedicated processing. 

For the transmission mode configurations we used the same mask for both visible and sub-millimeter wave 
imagers; the mask is shown in Figure 6a. An aperture in the shape of a hand gun was cut on an aluminum sheet 
and the sheet was placed in front of the SSM as shown in Figures 3 and 4. For the stand-off configuration an 
aluminum plate was made rough and a piece of carpet with an aperture in the shape of a hand gun was placed 
over it. This target is shown in Figure 6b. The target was placed 10 meters from the image forming mirror, as 
shown in Figure 5, and an image was formed on the SSM. 

The results of the reconstruction are shown in Figure 7. In all three cases the shape of the gun can be 
distinguished clearly. The image quality for the transmission mode configurations is better than for the stand-off 
configuration. One of the reasons for this difference is the optical system. Another reason is the specular nature 
of active imaging. Both contribute to the non-uniformity of the image intensity on the image plane. We note 
that in order to acquire the image in stand-off mode (Figure 7c) , the object must be positioned precisely. A 
slight angular movement, with respect to the optical axis, causes one part of the object to be imaged with higher 
intensity than the other parts and only it can be imaged. 

Of the three imager configurations the only configuration where all the radiation was collected by the detector 
was the visible one. Because of this feature we can reconstruct images regardless of where on the imaging window 
they are formed. The sub-millimeter wave configurations were missing the energy collection mechanism therefore, 



only the central part of the imaging window could be used to form images. In order to use the extent of the 
imaging window an energy collecting mechanism similar to the collecting lens in Figure 3 is necessary. 

All three reconstructions in Figure 7 contain reconstruction noise. This noise is an effect of the measurement 
noise, the non-linearity of the measurement, and the assumption of static hole patterns during the detector 
integration time. Of these, the measurement noise dominates. The reconstruction noise appears in the form of 
low spatial frequency noise because the signal m, that contains the measurement values, is low pass filtered prior 
to obtaining the solution using Equation 2. In addition, the measurement matrix M is ill-conditioned therefore 
the regularization parameters are large. Large regularization parameters result in low pass filtering as well. As it 
was mentioned previously, the regularization parameters that were used were not the optimal parameters. The 
optimal reconstruction parameters as well as additional regularization operators will be investigated in the near 
future. 

5. FURTHER IMPROVEMENTS AND USES 

The results from all three imager configurations provide insights into the future improvements needed for a 
practical stand-off imager. They also suggest further uses of the SSM. In this section we discuss the required 
improvements further uses of the device. 

When the device is used in the visible imager configuration the whole imaging window can be utilized to 
form images, as contrasted to the sub-millimeter wave configurations where only the central part of the window 
can be used. The difference is the energy collection mechanism. Being able to collect all the energy that passes 
through the holes is a must for the full utilization of the SSM. In addition all parts of the imaging window should 
be coupled to the detector equally. We will investigate mechanisms that can be used to achieve this in the near 
future. 

In this implementation of the spatially selective disk a random pattern of holes was generated and the holes 
where drilled on the disk. The only constraints that were enforced to generate the random pattern of holes were 
the minimal hole spacing and hole diameter. There are additional constraints that should be imposed on the 
generation of the hole pattern: (1) the hole pattern should result in a measurement matrix with low condition 
number, (2) the hole pattern should maintain a uniform hole area over the imaging window as the disk spins, and 
(3) the hole area over the imaging window should be maximized. The first constraint improves the robustness 
to measurement noise. The second constraint improves the uniformity of the image sampling and allows full 
utilization of the imaging window. The third constraint increases the amount of energy that is measured by the 
detector thereby increasing the signal to noise ratio of the measurement. 

Although non-random patterns of holes that satisfy the three additional constraints mentioned above might 
exist, random patterns are preferred. Random patterns improve the linearity of the device. To the receiver each 
hole appears as a radiating source and the pattern of holes can be considered to be an antenna array.13 Due to 
this antenna array an interference effect as a function of hole separation is observed in the total detected energy. 
This interference is minimized when the hole separations are random. 

The measurement matrix M is currently constructed by making the assumption that the hole pattern is 
stationary during the measurement. This assumption is clearly incorrect as we are spinning the disk continuously. 
A back of the envelope calculation shows that the error introduced by the inaccurate assumption is at most less 
than 1% for pixels at the edge of the disk, when the disk spins at 50 fps, the hole diameter is 2 mm, the disk 
diameter is 130 mm, and the integration time of the measurement is 1 /us. For pixels located toward the center of 
the disk the error decreases as a ratio of the circumference of the disk at that position with the circumference at 
the edge of the disk. This error will be mitigated in the future by including the non-stationary assumption in the 
calculation of the measurement matrix. This error can also be decreased by slowing down the disk, decreasing 
the hole diameter, or by decreasing the integration time. 

Another very important component of the imager is the optical system. The optical system that is currently 
being used was designed for conjugate point imaging and was not intended for wide area imaging. The current 
system suffers from several aberrations and is also an off axis system. These factors contribute to a non-uniform 
intensity distribution in the image and therefore parts of the image are less bright then others although they 



might be on the same object plane. We are currently designing a symmetrical multi-surface optical system with 
smaller aberrations. 

The SSM was designed for operation at 640 GHz and it was also used to form images in the visible part 
of the spectrum. This suggests that the SSM can be used in other parts of the spectrum as well. Using this 
device and reflective optics we can build a multi-band imager that provides optically registered images. The 
frequency independence of the device also suggests the use of the device to build a spectrometer. The SSM can 
be used to scan a spectrum of the scene mapped spatially across the mask using diffracting optical elements. This 
spectrometer is similar to a Hadamard spectrometer14'15 the only difference being the scanning mask (pattern 
on the disk). Also, the SSM and optics can be configured such that an imager and spectrometer utilize the same 
SSM and optical system. This device would produce images of the scene as well as the spectrum of the scene 
but not a spectral image. The spectrometer devices require a wide band receiver. These devices are currently 
being investigated. 

6. CONCLUSIONS 

We have built a spatially selective mask device for image space scanning with high modulation levels, high 
scanning rates, low mechanical complexity, and low cost. The design parameters that were identified in our 
earlier publications7-9 as well as some reconstruction methods presented there were used to build the device and 
reconstruct 64 x 64 pixel images. We introduced here an additional method for reconstruction. Through a simple 
calculation we concluded that a 64 x 64 pixel image is sufficient for most applications of interest. We demonstrated 
the use of this device in three different configurations and presented images collected and reconstructed for each 
configuration. The imagers as configured can scan images at 50 fps; they can record images at 10 fps; they 
can scan, reconstruct, and display images at 6 fps. The data acquisition and image reconstruction chains are 
currently implemented on a personal computer using Matlab interpreted code. The processes of data acquisition, 
image reconstruction, and image display can be accelerated to produce images at a rate of 50 fps if the code is 
compiled and a dedicated computer is used. We also discussed further improvements necessary for a practical 
stand-off video rate imager and also suggested further uses of the spatially selective mask device. Based on the 
results shown in this paper we suggested that the device can be used as part of a multi-mode imager, as part of 
a spectrometer, and as part of an imager spectrometer. 
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Abstract: We present a spatially selective mask that is used with a single pixel detector to 
reconstruct images in real-time. Reconstructed image sizes are variable; the mask works in 
multiple electromagnetic regimes. Experimental results are shown. 
OQS codes: (110.3010) Image reconstruction techniques; (110.6795) Terahertz imaging; (110.1758) Computational 
imaging 

1. Introduction 

Single pixel imagers find utility in the parts of the electromagnetic spectrum where focal plane arrays are 
nonexistent or are expensive to fabricate, such as in the Terahertz band (300GHz - 3THz). One method used to form 
images with a single detector is to scan either the detector over the image or the image across the detector using 
moving optics [1]. Real-time or video rate, imagers utilizing these methods are possible at high frequencies but as 
the frequencies decrease the optical components and the detectors become large and more difficult to move. 

An alternative imaging configuration is image space scanning. Examples of this configuration can be traced back 
to the early days of television with the Nipkow disk [2]. The Reticle systems work in a similar way [3]. Another 
example is the spatial light modulators for millimeter waves developed by Jacobs in the 1960s [4]. The Jacobs 
devices were frequency dependent and also were not developed beyond laboratory demonstrations. One modem 
device is the digital multi-mirror device (DMD) developed by Texas Instruments. The DMD was used successfully 
to implement a compressive sensing imager at visible light frequencies [5]. However, because of its size and limiting 
physical capabilities on its driving mechanisms the DMD cannot be used at frequencies such as terahertz. 

We have developed a spatially selective mask for terahertz that can also be used for higher frequencies. The 
device is implemented using a spinning disk with randomly placed holes. The mask is placed in the image plane of 
the imager and the detector is placed behind the mask to collect all the energy that goes through the holes. One 
image is formed for each revolution of the disk. The reconstruction method allows for variable image pixel sizes and 
performs at video rates. The device can also be used to implement compressive sensing. 

The device and the image reconstruction methodology have been described in detail previously [6], and are 
briefly described next for completeness. We present a laboratory prototype of the device that was designed for 
terahertz frequencies. While we wait for the construction of some additional components needed to build a terahertz 
imager, we paired the device with a visible light detector for proof of concept and to verify the frequency 
independence property of this device. We were able to reconstruct simple images of 32x32 and 64x64 pixels. Those 
images are presented and the results are discussed. 

2. The spatially selective mask and image reconstruction method 

A conceptual sketch of the spatially selective mask is shown in Fig. 1. The mask is placed in the image plane of the 
imager and an image is formed over the imaging window. The image is scanned with a spinning disk that is 
patterned with holes. The detector is sampled continuously and each sample is registered with the corresponding 
pattern of holes in the imaging window at the time of the sample. Once enough measurements are recorded, the 
image is reconstructed. 

The central component of the mask is the spinning disk with holes located at random positions. The placement of 
die holes and their sizes depend on the largest imaging wavelength, X^^. Because of the assumptions of the image 
reconstruction method, the transmission of each hole must be unity and transmission from many holes must be 
linear. Electromagnetic analysis [6], has shown that for a disk of thickness around three Xmax the minimal hole radius 
should be greater than 1.4 ^„and the minimal edge to edge separation between holes should be one A™,,*. As long 
as the radius of the holes and the depth increase proportionally, transmission and linearity are preserved. 

Another component of importance is the collecting hom placed behind the imaging window and the disk. This 
collecting mechanism is necessary for the coupling all of the energy that makes its way through the holes into the 
detector. From terahertz to infrared frequencies a hom is preferred because of the low loss and cost, but for 
frequencies in the visible spectrum a lens can be used instead to focus the energy into the detector. The imaging 
window is another component. It is an aperture that limits the part of the disk where the image is formed and 



scanned. The size of the imaging window determines the physical size of the image. The motor spins the disk at a 
constant rate. For standard video rate imaging (30 frames per second) the disk should spin at 1800 rotations per 
minute. 

Imaging window 

XZ "' £■—^S 

Fig. 1. Conceptual drawing of the spatially selective mask placed in the image plane of the imaging system. Insert: arbitrary division of the 
imaging window into pixels. 

For reconstruction purposes, the imaging problem is posed as a linear system of equations as shown in Eq. 1. 

m-Mp (l) 
For an image of n by n pixels, the column vectors m and p have dimensions n2 by 1 and the matrix M is a square 
matrix of dimensions n2 by n2. The vector p is composed of the values of each image pixel. The vector m is 
composed of the values of each measurement and is called the measurement vector. The matrix M is called the 
measurement matrix and each of its rows encodes the pattern of holes over the imaging window for each 
measurement. Referring to the insert in Fig. 1, each entry of each row of the measurement matrix is calculated as the 
fraction of the area of the corresponding pixel covered by holes. For instance, Mi,i = 0.23, Mit2 = 0.27, Mli3 = 0, and 
so on. The entries of the measurement matrix can also be interpreted as the contribution of each pixel to the 
measurement. 

The sizes of the pixels are arbitrary; therefore the imaging window can be divided into as many pixels as desired. 
However, as the number of pixels increases the probability that the rows of the measurement matrix remain linearly 
independent decreases. The linear independence of the rows of the measurement matrix is assumed in order to solve 
Eq. 1. For a more in-depth discussion of the image reconstruction methodology refer to reference [6]. 

3. Laboratory implementation of the device and results 

The spatially selective device was implemented using parts of a 5.25 inch hard drive. One of the platters of the hard 
drive was used as the spinning disk. The radius of the holes and their minimal separation were designed for 
operation at 640GHz. A hole radius of 1mm and a minimal separation of 2mm were chosen to guarantee unity 
transmission, linearity, the structural integrity of the disk, and the availability of standard tools. With these 
parameters as restrictions, a random pattern of 431 holes was generated and the holes were drilled on a CNC mill. 

The case of the hard drive was cut and modified for access to the disk and for easy mounting on the optical 
stages. The electronics of the motor driver were also modified so that the disk could be rotated at 3000 rotations per 
minute. An emitter diode and phototransistor pair were placed in the proximity of the disk to register the 
measurement samples with the corresponding hole patterns in the imaging window. The imaging window aperture 
was machined on two slabs of aluminum and they were mounted to sandwich the disk. 

Although the device was designed for operation at terahertz frequencies, we paired it with a visible light detector 
to form a visible light imager. This shows the proof of concept and the frequency independence of the device. A 
picture of the setup for visible light is shown in Fig. 2. A red laser source (400nm - 700nm) was collimated and was 
masked by object masks to form images over the imaging window. A lens was placed behind the disk and the 
imaging window to focus the energy into an N-Type Silicon PIN Photodetector. The optical path from the 
collecting lens to the photodetector was enclosed by a dark tube to eliminate stray light reaching the detector. The 
detector signal was sampled using a 16-bit data acquisition card from Measurement Computing. 

Three object masks were imaged and the reconstructed images for two pixel resolutions are shown in Figs. 3 and 
4. For each revolution of the disk 5000 samples were recorded and filtered in Matlab using a low pass filter. For the 
32x32 image, 1024 staggered measurements were chosen and used to solve Eq. 1 for the unknown pixel values. For 
the 64x64 image 4096 consecutive measurements were used. Equation 1 was solved by regularized matrix inversion 
which effectively acts as a low pass filter. 



Fig. 2. Pictures of the imager setup for visible light. Left- collimating lens, object mask, imaging window. Center-the whole setup. Right- 
patterned disk, collecting lens, tube enclosure, detector. 

When displaying the images, the negative values are truncated (dark spots in the images). The negative values in 
the reconstruction and the low spatial frequency noise are attributed to signal noise, filtering (and regularization), 
and the error in the manufacturing of the disk which is manifested in an incorrect measurement matrix. Minimizing 
noise and manufacturing errors relaxes filtering and regularization and improves reconstruction. 

As the pixel resolution increases, image reconstruction improves. This is expected because the finer sampling of 
the image decreases the pixel-image ambiguity. It should be noted that the images are acquired, reconstructed and 
displayed at video rates. The images can also be reconstructed using compressive sensing methods and a portion of 
the measurements. This is currently being investigated. 

Fig. 3. Image reconstructions of 32x32 pixels for the three object masks, the images are normalized; object masks are shown in the inserts. 

20 40 60 20 40 60 20 40 

Fig. 4. Image reconstructions of 64x64 pixels for the three object masks, the images are normalized. 

The authors would like to thank Robert Hewitt, Rick Voyles, and Robert Jordan for their help in manufacturing 
some of the components. 
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ABSTRACT 

In this paper, the design and implementation of a sub-millimeter line scanning imager using a novel image- 
forming device is described. The system consists of a coherent illuminator, an optical system, an image plane 
mask, and a coherent detector. The image plane mask is formed by making a sequence of holes along a constant 
radius of a metal disk. Spinning the disk scans the holes through the image formed on it. A detector placed 
behind the spinning disk collects radiation passing through the holes. The holes are arranged in a pseudo- 
random pattern. At each detector sample time, energy from a different pattern of holes is collected. A rigorous 
electromagnetic analysis shows that, for a certain minimum size and spacing of holes and certain disk thicknesses, 
these measurements constitute a linear measurement of the energy in the image formed on the disk. Using 
techniques reminiscent of those used in compressive sensing, the image is then reconstructed by applying an 
inverse linear matrix transform to these measurements. We show how simulation can be used to optimize the 
design of the disk. We demonstrate a laboratory version of this device and discuss future efforts to systematize 
it. Extensions to full two-dimensional imaging are also discussed. 

1. INTRODUCTION 

The development cycle of imaging devices is a recurring one. First, a single detector is developed that allows the 
conversion of radiation to a form that can be digitized by a computer or perceived by a human. Next, comes the 
challenge of reducing the cost of the detector and making it more compact so that staring arrays can be built. 
This turns out to be a difficult challenge. Therefore, in the meantime, scanning systems are developed that 
facilitate the formation of images at the expense of mechanical complexity, system size and weight, and image 
formation rates. FinaUy, the goal of building staring arrays is achieved and scanning systems become obsolete. 
However, scanning systems play an important role because they fill the time gap between the development of 
the single detector and the staring array. Some examples of this cycle are visible light imagers, infrared imagers, 
and submillimeter wave imagers. To our knowledge, focal plane arrays in the submillimeter wave regime have 
not been demonstrated yet, although a method for building compact linear heterodyne receiver arrays has been 
proposed and is in the first stages of development.1 

The complexity of developing scanning systems for sub-millimeter waves is greater than it is for the scanning 
systems in other regimes, such as visible and infrared. First, the wavelength is larger therefore the size and 
weight of these systems are greater. Second, the radiation is not as abundant. Current scanning systems for 
sub-millimeter waves are large in size and have image formation rates of less than one frame per second.2 We 
have developed a novel image forming device that can be packaged into a handheld box and is capable of scanning 
and forming images at video rates. 

The system consists of a coherent illuminator, an optical system, an image plane mask, and a coherent 
detector. The image plane mask and the image formation methodology associated with it are the novel parts of 
the system. The image plane mask is formed by making a sequence of holes along a constant radius of a metal 
disk. Spinning the disk scans the holes through the image formed on it. A detector placed behind the spinning 
disk collects radiation passing through the holes. The holes are arranged in a pseudo-random pattern. At each 
detector sample time, energy from a different pattern of holes is collected. These measurements constitute a linear 
measurement of the energy in the image formed on the mask. This process can be formalized mathematically 
and is expressed as 
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Figure 1: Conceptual sketch of the image plane mask and the coherent detector. 

m = M p (1) 

where m is a vector the elements of which contain the values of the measurements, M is a full rank matrix that 
encodes the pattern of the holes on the disk for each measurement, and p is the unknown vector that contains the 
pixel intensities. In compressive sensing terminology, M is the measurement matrix and m is the measurement 
vector. The image is reconstructed by solving this equation for p. Because M is a full rank matrix, the solution 
is easy to compute. This device and the image measurement and reconstruction technique are described in more 
detail in a previous publication.3 A conceptual sketch of the image plane mask and the coherent detector is 
shown in Figure 1. 

The imager is configured similarly to a system with a focal plane array and the image plane mask is positioned 
where the focal plane array would be. Because the system is still a scanning system, the available integration time 
per measurement per detector is much less than the integration time available to the focal plane array detectors. 
This is mitigated in part by the presence of many scanning holes per measurement allowing more energy to go 
through and be measured by the detector. In addition, if compressive imaging techniques are used, the image 
can be reconstructed by taking less measurements than desired image pixels.4,5 This increases the integration 
time available per measurement. The drawback of this technique is the slow reconstruction time associated with 
the iterative compressive sensing algorithms. This approach is not employed in this research, rather the number 
of measurements is made equal to the number of desired pixels allowing instantaneous reconstruction. 

In this paper, we present the results of a three-dimensional analysis that aids in the design of the image 
plane mask. The linearity of the mask is investigated. The reasons for the non-linearity of the mask and a 
method by which this mask is made nearly linear are discussed. Following this introduction we briefly present 
the electromagnetic analysis methods used in this paper. The results of the analysis are discussed and the 
design parameters are given. Next, we describe the implementation of the system and show experimental results 
considering the results of the electromagnetic analysis. We discuss our approach to systematizing the device 
so that the images can be scanned and reconstructed at video rates. We also discuss the extension to a two- 
dimensional imager. The paper concludes with a summary. 

2. THEORETICAL METHODS 

To design the image plane mask we utilize a three-dimensional electromagnetic analysis. The three-dimensional 
structure of interest is assumed to be a perfect electric conductor (PEC). The field incident on the structure is 
an elliptically polarized tapered Gaussian beam given by Braunisch.6 The observables of interest are the power 
incident on the structure, the power reflected from the structure, and the power transmitted by the structure. 
The powers are obtained once the far incident and scattered fields are known. The far incident field is derived 
using the stationary phase approximation.7 Using the incident field on the structure we solve the Electric Field 
Integral Equation (EFIE) for the currents using the Method of Moments (MoM) technique. The currents are 
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Figure 2: Cross-section cut of the scattering geometry. 

used to find the far scattered fields with the help of the far field approximation. Below we summarize the main 
equations used in the analysis. For the complete derivations of the equations and the numerical techniques used 
see.8 

To formalize the problem the scattering object is assumed to be an open scatterer. The open scatterer can 
be extended and deformed to adhere to the scattering structure of interest. A cross-section of the scattering 
geometry is shown in Figure 2. The scatterer is illuminated with the Gaussian tapered beam from above (z > 0) 
. The incident field induces currents on the scatterer which radiate. Therefore, the total field anywhere in space 
is composed of the incident field and the scattered field radiated by the scatterer 

E(R) = MR) + ES(R) (2) 

The EFIE for the structure is obtained in the following manner.  The well-known vector wave equation is 
transformed into an integral equation using the well-known vector form of Green's theorem and the free space 
Green function dyad Q^ given by9 

1 eik\R-£.'l 
(3) 

where £ = xx + yy + zz, is the unit dyad (or idem factor), k2 = w2€oMo is the free space wave number, 
R_ = xx + yy + zz is a vector in Cartesian space noting the observation point, Ä' is a vector noting the source 
point, and V = i^ + y■§- + |Jj is the gradient operator. The Green function dyad satisfies the wave and 
radiation equations.9 Using this fact and applying vector identities,10 we obtain 

E(E) = -i [^o(n x #(£')) ■ SoG2'>£) + (n x £(#)) ■ V x £,(#,£)] «*»' (4) 

where E(R) is the electric field in a volume V enclosed by the surface 5, h is the outward normal to S, Ü.GE') 
is the magnetic field on the surface contour. 



Referring to Figure 2, Equation 4 is applied to the following fields in the respective regions: the scattered field 
in the volume V+enclosed by S+, Sc, and £+,; the incident field in the volume V~enclosed by Sf, Sc, and S^; 
the total field in the volume V'enclosed by S~, Sc, and 5^,. In all three cases, the integral over S£/~ vanishes 
because the scattered and incident fields satisfy the radiation condition in the respective regions. Combining and 
adding the three resulting equations as the contours 5+ and S~ approach Ss and using equation 2, results in 

ES(R)   =   J [^o(2' x (H+ - ET)) ■ g, (5) 
s. 

+(ft' x (E+ - ET)) -V'xd ds'  R e v- u v+ 

Equation (5) gives the scattered field in the volumes V~ and V+ in terms of the fields on the scatterer surface 
S,. The superscripts + and - indicate fields above and below the scatterer and ft' is the unit normal pointing 
into V+, This equation is made more specific by applying the well-known PEC boundary conditions11 of the 
scatterer 

Ea(R) = *"Mo(I + pVV) - jum^^m ds'   ReV-uV+, (6) 
s. ~ 

where J, is the surface current on the scatterer and the free space Green function dyad is written explicitly. 
Equation (6) is used to find the scattered field in the volume V once the surface currents are known. The final 
form of the EFIE is obtained using Equation 2 in Equation 6 and evaluating Equation 6 on the boundary of the 
PEC scatterer 

f 1 r eik\R-R'\       ) 
n x EtiR) = -ft' x    iuMl+ ±VV) ■JJs(g)47rlR_R,lds' \    R€Sa (7) 

The unknown currents are obtained by solving Equation 7 using the Method of Moments. 

The incident field on the scatterer is given by8 

2ir      ir/2 

Ri 02)    =    [d<t> I de k2 sin 6 cos 0 
0       0 

exp {ik [x sin 9 cos </> + y sin 9 sin <j> — z cos 9]} x 

m<t>w,<t>) (8) 
This is a Gaussian beam with spatial center at the origin of the coordinate system and e(9, <f>) and i>{9,4>) are 
the polarization vector and Gaussian spectrum respectively, given in.6 

The far incident field is calculated from Equation 8 using the method of stationary phase for double integrals 
as presented in Mandel and Wolf.7 For z > 0, and 0 < 9, < n/2, 0 < <£s < 27r, the far incident field is given by 

fifo, 6) ~"Pt^ib'1 &(*.,*■) (9) 

Similarly, the far incident field for z < 0, and TT/2 < 9S < n, 0 < <ps < 2TT, is given by 

£(*„*,)-^Äläp,,*,) (10) 

where 
2p coe(-8.) fc2iK-0„*.)£(-0„^) 0 < 9S < TT/2 

-2f cos (9, - TT) k2i>{9, -n,4>3- n)e(9s - TT, ^ - w)        TT/
2
 < ^ < * 



  

is the far incident field amplitude and it is assumed that 0 < 4>s < 2w. 

The far field is obtained by approximating Equation (6) for the large argument \R - PJ\ and making the far 
field approximation.12 The far scattered field is given by 

M.W,*)  =   —£.(M) (12) r 

where 

F,(9, 4>) = i^-f {IM) ~ oo ■ IM)) e-ifc(£'*W (13) 
s. 

is the far scattering field amplitude. The unit vector 5 is in the direction of the observation and is given by 

o—x sin 8 cos <j> + y sin 9 sin <f>+z cos Ö (14) 

Because of the conservation of energy, the power incident on the structure is equal to the sum of the powers 
reflected by and transmitted through the structure. Because the structure is a PEC, there is no absorbed power. 
Therefore8 

P! = PT + PR (15) 

where Pj is the incident power given by 

P: = — I dßsine [d<j>|£J2 (16) 

PR is the reflected power given by 

PT is the transmitted power given by 

TT/2 2TT 

PR=—  f dOsinO /"<^|FJ2 (17) 

PT = —   f d9sind fd^lEi + Ff (18) 

TT/2 0 

For the numerical solution of Equation 7 the structure of interest is modeled using triangular patches. The 
famous Rao-Wilton-Glisson (RWG) basis functions13 are used as basis and testing functions for the MoM. The 
resulting matrix equation is solved using available software such as Matlab. Once the surface currents on the 
structure are found, the desired power quantities are calculated with the help of the equations presented above. 
For detailed explanation of the equations presented above and the numerical methods associated with them refer 
to.8 

3. ELECTROMAGNETIC ANALYSIS RESULTS AND DESIGN PARAMETERS 

The analysis method presented above is used to design the parameters of the scanning holes. We are interested 
in the radius, depth, and minimal proximity of the holes. From previous results,8 the depth of the holes does 
not have a noticeable effect on the transmission of the radiation through the holes as long as the radius of the 
hole is larger than the first cutoff radius of a circular waveguide and the depth is comparable to the diameter 
of the hole. For holes with radii less than the cutoff radius, transmission decreases exponentially with depth. 
As it will be shown in the results presented below, we are only interested in holes with large radii. Therefore, 
from a design perspective, the hole depth is a free parameter. The thickness of the disks available to us is 
approximately 2.7112A, where the wavelength A = 468.43/^m, corresponding to a frequency of 640GHz. Because 
of this restriction, the hole depth parameter is fixed. 
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(a) (b) (c) 
Figure 3: Three-dimensional geometry of the hole structure. The units are in normalized A. 

Transmission through hole, depth = 2.7112A. 

Figure 4: Power transmission coefficient as a function of hole radius for hole depth of 2.7112A. 

The power transmission coefficient of the holes with depth 2.7112A is investigated as a function of the hole 
radius. The three-dimensional geometry of the structure used in this analysis is shown in Figure 3. The geometry 
is finite and has a diameter of 8A. The incident field has a tapering of 1.5A (the tapering parameters is related 
to the variance of the Gaussian taper), is normally incident, and is circularly polarized. The incident beam 
resembles a blur spot approximately 5A in diameter. Because the incident field is tapered, the structure can be 
made finite and the transmission of the hole can be measured. The radius of the hole is varied from 0.2A to 2.05A 
in steps of 0.05A. The power transmission coefficient is calculated as the ratio of the incident power on the top 
aperture of the hole to the power transmitted in the lower hemisphere (z < 0). The results are shown in Figure 
4. 

The transmission coefficients for certain radii are greater than unity. The reason for this is that only the 
power incident on the hole aperture from above is used as the input power reference. The fields radiated by the 
edge currents at the hole apertures are not included in the input power reference but they are accounted for in 
the far field measurement. Hence, the calculated power transmission coefficient is greater than unity. The edge 
current effects become less evident as the radius increases. When the radius is larger than 1.4A these effects are 
almost unnoticeable and therefore the far field measurement results only from the power incident on the hole 
aperture. In this case, the holes are said to scan the image formed on the image plane mask. This is the desired 
effect because we need the radiation associated with the part of the image formed on the hole to pass and the 
part of the image outside the hole to be blocked. 

Another important parameter is the proximity between two holes. This affects the linearity of the structure. 
Cross-sections of the geometries used to investigate the minimal proximity are shown in Figure 5. The depth of 
the holes is 2.7112A and the radius of the holes is 1A. For these hole parameters the transmission coefficient is 



(a) (b) 
Figure 5: Cross-sections of the geometries used to investigate the minimal proximity between holes. In the 
three-dimensional simulation the depth of the holes is 2.7112A and the radius is 1A. The incident field is the 
same as in the radius analysis. 
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Figure 6: Percent linearity error as a function of the center to center separation of two identical holes. 

unity. For a linear structure, the measurement from the structure in Figure 5a should be equal to the sum of 
the measurements from the structures of Figures 5b and 5c. Because the source and the detector are coherent 
the power measurement is not expected to be linear. 

To investigate the linearity of the structure as a function of the separation distance we introduce the percent 
linearity error metric. The percent linearity error is calculated as the difference of the measurement from the 
structure in Figure 5a with the sum of the measurements from the structures of Figures 5b and 5c. Then, the 
result is divided by the the sum of the measurements from the structures of Figures 5b and 5c and multiplied 
by 100%. The results are shown in Figure 6. 

Except when the holes are very close to each other (edge to edge separation< A) the linearity error oscillates 
around zero with a period of 1A. This error is predicted by the array factor of this structure8 because the 
structure resembles two identical radiating antennas separated by a distance.14 The error can be eliminated if 
many holes are placed at random distances from each other. This is advantageous because it not only improves 
the linearity of the structure but it also does not require any modification of the scanning technique. The holes 
in the line imager are placed in random fashion as required by the reconstruction technique. 

From the results of the electromagnetic analysis, we can conclude design parameters for the holes in the 
image plane mask. The radius of the holes needs to be greater than 1.4A but other radii are also possible such 
as 1A. In all these cases the far field measurement results from the field incident on the hole, and not from the 
edge currents. In this case the holes are effectively scanning the image formed on the mask. The edge to edge 
separation of the holes is recommended to be greater than 1A. This separation assures that the only non-linearity 
is due to the array factor of the structure. The depth of the holes was determined from the available disk for the 
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Figure 7: Grouping of pictures illustrating the imaging system and its parts. 

production of the mask, however if the depth parameter is to be designed it should be chosen comparable with 
the diameter of the holes and such that it does not introduce resonances (i.e. edge currents). 

4. IMPLEMENTATION OF THE IMAGING SYSTEM 

A grouping of pictures illustrating the descriptions presented in this section is shown in Figure 7. A laboratory 
prototype of the image plane mask device has been implemented using parts from a 5.25 inch hard drive. The 
hard drive platters are made of conducting materials and are balanced and flat. They are used as the disks on 
which the scanning holes are drilled. The motor can be driven at a constant rate and the disk is already mounted 
on it. We have designed some electronics that can drive the motor at three revolutions per second. The motor 
can rotate at speeds up to 90 rotations per second using other electronics. The front cover of the hard drive is 
removed and a window is placed in front of the scanning disk. This is the imaging window and the optical system 
forms the image onto it. The extent of the imaging window is 22 millimeters long. An opening is made in the 
back of the case so that the radiation is allowed to pass onto the receiver. An optical sensor is mounted in the 
vicinity of disk edge. This sensor is used to trigger a measurement for each rotation of the disk and facilitates 
the registration of the measurements with the position of the disk. The receiver and source are from Virgina 
Diodes and operate at 640 GHz. The signal is detected from the receiver and is down-converted to 4.8 GHz. 
The down-converted signal is measured using a spectrum analyzer (Agilent SCA Spectrum Analyzer AN1996A). 
The measurement data is transferred remotely to a computer where it is stored and later post-processed to 
reconstruct the image. For each rotation of the disk 1000 data points are collected. 

The optical system consists of a main elliptical reflective surface with a focus at one meter and the other at 
10 meters. The image is formed on the one meter side. The system has an effective diameter of 0.3048 meters 
(12 inch), effective focal length of 0.9091 meters, resulting in a F# of 2.9826. The magnification of the system is 
0.1, the depth of focus for coherent radiation is 0.01062 meters, and the depth of field for incoherent radiation is 
1.0162 meters. The diffraction spot diameter is 3.75 millimeters for a wavelength of 468.43/xm, corresponding to 
the illumination frequency of 640 GHz. The system is folded using two flat mirrors. The source is placed three 
meters away from the object to flood illuminate it. 

Holes have been drilled on the disk in a constant radius of 58 millimeters. This radius and the extent of 
the imaging window were chosen to minimize the curvature of the scan. A single hole of radius 0.5 millimeters 



Figure 8: Picture of the target. 

(1.06 A) is drilled at a distance from other holes that have a radius of 1 millimeter (2.12 A) and are placed in the 
vicinity of each other at a random order respecting the design parameters presented above. The single hole is 
used to perform a raster scan of the image formed on the imaging window. The radius of half a millimeter allows 
high transmission (over 98%) and high scan resolution. The disk is 1.27 (2.7112 A) millimeters thick. 

The imaging window is placed over the disk so that the image is scanned vertically. For demonstration 
purposes, the object is placed on a translational stage and is scanned horizontally. Vertical lines of the image 
of the object are scanned by the image plane mask as the object is moved horizontally and an image of it is 
reconstructed when the measured data is post-processed. The results are shown in the next section. 

5. EXPERIMENTAL RESULTS 

For this experiment we chose to form an image of the letter "M". A picture of the target mounted on the 
translational stage is shown in Figure 8. The object letter is formed by placing a piece of carpet with a cutout of 
the letter "M" over a plate of aluminum. The plate of aluminum was made rough to minimize specular reflections. 
The contour of the letter "M" was approximately 15 to 20 millimeters wide. The height of the letter was 60 
millimeters. Because of the characteristics of the optical system, the image is expected to be one tenth of the 
object in size and highly blurred. The target was made small to ensure that it was illuminated uniformly by the 
source. We did not use illumination optics hence, the wavefront reaching the object was not planar and images 
of large objects were not formed properly. 

The results of the raster scan (single hole) and linear measurement scan (plurality of holes) are shown in 
Figure 9a and Figure 9b respectively. Referring to the raster scan image which will be used as the reference, the 
image is severely blurred. However, the structure of the letter "M" can be identified. The blur is expected given 
the characteristics of the optics. From the measurements the image has a height of 25 samples corresponding 
to 9.1 millimeters (the radius where the holes are placed is 58 millimeters and 1000 data points are collected 
per rotation). This is consistent with the calculation from the parameters of the optical system, resulting in an 
object size of approximately 60 millimeters. 

Figure 9b shows the reconstructed image using the linear measurements made on the image plane. There 
is a clear resemblance between the reconstructed image and the raster scan image of Figure 9a. The technique 
used to reconstruct the image is described in detail in.3,8 To reconstruct the image it was necessary to use 
regularization when inverting the measurement matrix. This is necessary because of the error in the knowledge 
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Figure 9: Images of the object in Figure 8. 9a Image reconstructed from the raster scan, 9b image reconstructed 
from the linear measurement. 

of the exact positions of the holes on the disk for each data sample. Analysis shows8 that the quality of the 
reconstruction will improve if all of the energy that goes through the holes is measured. Currently, only part of 
the energy is measured. The proper way of collecting all of the energy will be investigated in the future. 

6. FUTURE EFFORTS 

Currently, the imager can perform line scans at rates of three frames per second and the data is post-processed 
to reconstruct the images. The optical system was designed for a conjugate point scanning imager and is not 
appropriate for the current imaging system. In the current implementation, only part of the energy that goes 
through the holes is collected by the receiver antenna. In addition, the image plane mask device is not properly 
guarded against stray radiation from the different reflective materials in the room. We plan to address all of 
these issues in the near future. 

New electronics will be built to drive the hard drive spindle motor so that the disk can be spun at least 
30 revolutions per second. This will facilitate video rate imaging. The use of additional down-converters and 
an analog to digital conversion card interfaced to a computer will facilitate the collection of the measurement 
data and the real time image reconstruction. We are in the process of designing new optics for the imager and 
illumination systems. This will facilitate uniform plane wave illumination of the scene and the minimization of 
aberrations. To collect all the energy that passes through the holes we plan to build a lens that will be placed 
behind the holes. The lens will focus the energy on the horn of the receiving antenna. 

One of the factors that affect the quality of the reconstructed image is the uncertainty of the location of 
the holes. To mitigate this, we will use precision machining to drill the holes at known locations. This and the 
addition of the lens behind the holes are expected to improve the quality of the reconstruction. The sensitivity 
of the imager can be improved if the image plane mask is shielded properly from stray radiation that makes its 
way into the receiver. This will allow us to form images of objects that have low reflectivity coefficients. Also, 
by increasing the size of the imaging window we can form larger images. Because more randomly placed holes 
will be contributing to the measurement, the linearity of the measurement will improve. This will improve the 
quality of the reconstruction. 

The imager can be extended to full two-dimensional imaging simply by replacing the slit imaging window with 
a rectangular one and by adding more randomly placed holes on the disk. The image reconstruction technique is 
the same as for the line image and has been described in detail in previous publications.3,8 Preliminary analysis8 

shows that we will be able to generate enough random patterns in one revolution of the disk to reconstruct a 32 
by 32 pixel image from linear measurements. When the line imager has been optimized and all associated issues 
have been resolved, we will implement the full two-dimensional imager. 



7. CONCLUSIONS 

We have presented the results of a rigorous three-dimensional electromagnetic analysis and used them to design 
the image plane mask. For the available disk thickness the optimal hole radius was greater than 1.4A. We also 
investigated the linearity of the mask and concluded that the mask is made nearly linear if the scanning holes 
are placed randomly on the disk and separated by at least 1A from each other. We described the implementation 
of the system in detail. Two images of the same object formed using the line imager were presented. The first 
image was formed using raster scanning as the object was moved horizontally on a translation stage. This image 
was used as a reference. The second image was reconstructed from linear measurements made on the image plane 
and was compared against the first image. There was clear resemblance between the two images. Finally, we 
discussed our approach to systematizing the device so that the images can be scanned and reconstructed at video 
rates. We also discussed the necessary changes that need to be made to improve the image reconstruction from 
linear measurements.These improvements will facilitate the successful implementation of the full two-dimensional 
imager. 
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A Sub-Millimeter Wave Line Imaging Device 
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ABSTRACT 

In this paper we present a single mode active device for sub-millimeter wave line imaging. The illuminated scene 
is imaged through focusing optics onto a device we have developed and have dubbed a spatially selective mask 
(SSM). This device transmits parts of the image onto a heterodyne receiver. Currently the SSM is capable of 
transmitting user-selectable parts of one line of the image that is focused on it. Multiple patterns are used to 
sample a line in the image. The voltage in the receiver resulting from each pattern constitutes an independent 
measurement of the illuminated scene along a line. A one dimensional image is reconstructed from the mea- 
surement results and a priori knowledge of the patterns using methods derived from the theory of compressive 
sensing. The theory behind the device and the design principles we use are reviewed. We show line images 
obtained at 640 GHz. Extension of this technique to two dimensional imaging is discussed. 

1. INTRODUCTION 

The usefulness of sub-millimeter wave imaging in military and security applications needs no introduction. Sub- 
millimeter waves can penetrate through many manmade materials and provide high resolution images at stand-off 
distances while still not suffering tremendously from atmospheric attenuation.1'2 However, the current state of 
the art is limited to target space scanning systems that require complicated mechanical mechanisms and hence 
tend to be bulky, heavy, and not portable. These systems usually make use of a single pixel detector that offers 
very high signal to noise levels due to the maturity of the technology. Other imaging methods that perform 
well in other modalities such as interferometric arrays in the millimeter wave region3,4 or focal plane arrays in 
infrared and visible regimes, have yet to be demonstrated in the sub-millimeter wave regime. 

Scanning the image space is an alternative to scanning the target space. The image space is smaller than the 
target space and the scanning mechanisms can be made small, thereby eliminating the bulkiness of the imager. 
Current efforts are going on at Rice University to develop a electronically controlled mask that can be used to 
scan the image field.5 Although promising, they have not been able to achieve the high modulation levels needed 
to bring the signal to noise ratio to acceptable levels for image formation. We have developed a method of image 
space scanning with high modulation levels, high scanning rates, low mechanical complexity, and low cost. At 
the core of this method is a rotating disk with holes that spins at a constant speed. The image is formed on one 
portion of the disk and it is selectively transmitted through the holes onto the receiver. Linear measurements 
are made on the image as the disk rotates. An image is reconstructed on a screen using the knowledge of the 
hole patterns and the measured signal from the receiver. 

The paper is organized as follows. Section 2 describes the device and the method of image reconstruction in 
more detail. In Section 3, we present the theoretical formulation and numerical methods used for the performance 
and electromagnetic analysis of the device. Results of the analysis that pertain to the design of the device are 
shown in Section 4. The image simulation results and the experimental image results are shown in Section 5. 
Section 6 discusses the extension of the imaging methodology to two dimensional images. Section 7 concludes 
the paper. 
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Figure 1. (Left) Conceptual sketch of the line imaging device, (right) pixel block divisions. 

2. THE SPATIALLY SELECTIVE MASK AND IMAGE RECONSTRUCTION 

Figure 1 shows a conceptual sketch of the line imaging device that utilizes a spatially selective mask. This device 
is placed in the image plane of the imager and the image of the scene is formed on it. The device consists of a 
rotating disk that contains holes along a constant radius. The image is formed only on a part of the disk and 
that part is referred to as the imaging window. For the line imager this window resembles a slit. The receiver is 
placed behind the disk and all the energy from the image that passes through the holes is collected. At any given 
time several holes are found in the imaging window. These holes sample the image that is formed on the imaging 
window by allowing only the energy from the part of the image where the holes are located to be measured. A 
number of measurements are made as the disk is rotated and the pattern of holes inside the imaging window 
changes. 

In order to reconstruct the image from these measurements the imaging window is divided into conceptual 
(imaginary) blocks. These blocks are the image pixels and the reconstruction process will produce the average 
value of the intensity in each of them. If the number of measurements made is less then the number of pixels 
inside the imaging window, the image can be reconstructed using compressive sensing algorithms as presented 
in.6 Although a lot of research is being dissipated into compressive sensing algorithms, their performance with 
respect to time is still below that required for video rates because they use iterative methods. As will be shown, 
one of the advantages of our technique is that it allows us to take as many linearly independent measurements as 
there are pixels in the image, given that the positions of the holes on the disk have been carefully chosen. This 
advantage can be exploited in the reconstruction process as presented below. 

Our imaging problem can be cast into a matrix equation of the form 

m = Mi (1) 

where m is a vector the elements which contain the measurement values corresponding to each pattern of holes 
in the imaging window as the disk is rotated. M is a full rank square matrix called the measurement matrix. 
The vector t contains the pixel values of the image formed on the imaging window and is the unknown quantity. 
Each row on the measurement matrix corresponds to one pattern of holes on the imaging window and is to be 
registered with the measurement values mn corresponding to that pattern. Each entry in the rows corresponds 
to a pixel. The numerical value of each entry is the portion of the pixel corresponding to that entry that is 
transmitted through the hole. 

Assuming that the holes on the disk are placed so that each measurement matrix row is linearly independent 
of the others equation 1 can be solved for i , 

M    m (2) 



  

Equation 2 can be solved in parallel since each entry of i can be computed simply through addition and 

multiplication operations on the elements of M and m. This is very important when the technique is extended 
to two dimensions where the number of computations increases greatly. The series of measurements mn, elements 
of m, can be collected at the same rotational positions of the disk for each image frame. Hence, the elements of 

~M need to be computed only once. Once a full set of measurements is made and the entries of the measurement 
vector m are known, the image can be reconstructed almost instantaneously by solving equation 2. A full set of 
measurements can be collected during one full rotation of the disk. If the disk is rotated at a constant rate of 
1800 rotations per minute the imager will produce images at a video rates of 30 lines (or frames) per second. 

For the line imager an appropriate pixel block can have the shape of an area element on the r - 6 plane of a 
cylindrical coordinate system as shown in Figure 1 (right). In that implementation the entries of the measurement 
matrix can be calculated using geometrical formulas given that we know the centers of each hole (rm, dm) with 
respect to the revolution axis, their diameters, and the angular extent of the pixels (8P). Each pattern of holes 
in the imaging window corresponds to one row of the measurement matrix. We obtain different patterns at 
different rotational positions of the disk. For each pixel the geometrical formulas are used to determine the area 
of intercept of that pixel with the holes inside the imaging window. The ratio of the area of intercept to the area 
of the pixel becomes the numerical entry on the row of the measurement matrix corresponding to that pattern 
and pixel. 

3. ANALYSIS METHODS 

It is natural to ask several questions when constructing a device such as the one described above. What is the 
optimal number of holes inside the imaging window at any given time? What is the minimum dimension of 
the holes? What is the minimal distance between holes? What is the optimal depth of the holes? All but the 
first question require a rigorous three-dimensional electromagnetic analysis. The first question is answered by 
observing the condition number of the measurement matrix as we change the number of random holes inside 
the imaging window. The condition number of the measurement matrix indicates how noise is amplified in the 
reconstruction process and is given in equation 3. 

Ml M l 
(3) 

The condition number is always greater than one, with one being the lower limit signifying a well-conditioned 
matrix and infinity signifying a singular matrix. Obviously the number of holes that can be placed in a limited 
space, i.e. the image window, is determined by the dimensions of the holes and the minimal proximity between 
any two holes. 

Transmission through the cylindrical holes of the disk has characteristics similar to transmission through a 
cylindrical waveguide.7 The transmission depends on the dimensions of the cylindrical hole. The waveguide 
behavior of the cylindrical holes becomes evident when the thickness of the disk is made finite. For example, 
as the diameter of the hole is increased through the cutoff value, large jumps in transmission are noticed and 
then the transmission decreases until the cutoff value of another mode is reached and then another jump, and 
so on. Also, if the hole diameter is kept constant and the thickness of the disk is varied, one notices sinusoidal 
variations in the transmission through the hole. The transmission of the hole for hole diameters less than the 
cutoff diameter, decreases exponentially as a function of thickness.7 The same relationships between transmission 
through the aperture and aperture dimensions are preset with thick slits.8 Thick slits behave like parallel plate 
waveguides and can be analyzed using a two-dimensional electromagnetic analysis. 

Although the two-dimensional electromagnetic analysis of the structure would reveal the same relationships 
between the structure parameters and the power transmitted to the receiver, it can not be used to obtain design 
parameters. The reason is the difference between the cutoff frequencies of a parallel plate waveguide and the 
cutoff frequencies of a cylindrical waveguide (due to the boundary conditions). The design parameters can be 
obtained through a three-dimensional analysis. A three-dimensional analysis is being implemented and will be 
the subject of another publication. 

I 



Figure 2. Electromagnetic analysis geometry 

The two-dimensional analysis can give us insight into the qualitative behavior of our imager as observed by 
experiment. For this purpose we implemented a two-dimensional electromagnetic simulation using a Method of 
Moments technique. The geometry for the simulations is shown in Figure 2. The width of the slits is noted by 
dw, the slit separation is noted by da, the slit depth is noted by dd, and the angle of incidence of the incident 
field is noted by fa and is measured with respect to the x-axis. The 2-axis is pointing out of the page. As will 
be delineated next, the currents on the contours of the structure are the primary quantities that need to be 
calculated. All the other unknown quantities are obtained from the currents. Since the contours are taken on 
the surface of the structure the calculated currents are also physical currents. The theoretical formulation of the 
electromagnetic equations used to analyze the structures of interest has been presented previously.9 The main 
equations are summarized below. 

The total electric field at any point in space is given by the sum of the incident and scattered fields 

* (x) = #i (x) + #s (x) (4) 

where x is a vector in the x, y plane. These fields satisfy the Helmholtz wave equations. The Incident electric 
field is assumed to be polarized in the z-direction and is propagating towards the structure in the negative 
y-direction. The scattered field satisfies the radiation condition in all directions, while the incident field satisfies 
it for the lower half space since it is incident from the top half space. For several reasons made clear below, the 
incident field is modeled as a superposition of tapered Gaussian beams and is defined as 
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where k0 is the free space wave number for the wavelength of interest, c^is the amplitude of the nth beam, 
x0„and yon are the spatial shifts of the beam on the structure, and Wn (a) is the Gaussian spectrum function of 
the nth beam and is given by10,11 

W (a) = ■s n y/nQ, k0r sin fa 

The tapering factor of the beam is represented by r and the angle of incidence, measured with respect to the 
positive x axis, is represented by fa, as shown in Figure 2. Gaussian tapering is convenient for several reasons. 
It makes possible the calculation of the transmitted field because the incident field is almost finite in extent at 
the structure. It minimizes the erroneous effects of a finite structure since the incident field at the ends of the 
structure tends towards zero. It can be used to simulate the diffraction-limited image of one or more point sources 
because of its similarity with the Sombrero function. This allows the simulation of the structure of interest as 
part of an imaging system and is very useful when analyzing the resolution properties of the system. 



Using Green's theorem on the fields and the Green's function for two dimensions, and applying the boundary 
conditions on the structure, we express the scattered and incident fields in terms of the currents on the structure. 

The far field for the incident field is calculated using the stationary phase approximation.12 

t,w = ^)^f °f <: (6) 
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The scattered field in the far region is given by 
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where F, (<j>)is the scattering amplitude, 5 = xcos<j>a + ysin<j>, is a unit vector in the observation direction 

and g (\x\) is the propagation phase and attenuation. 

Because of the conservation of energy the power of the incident field should be equal to the sum of the. 
reflected power and transmitted power. 

The incident power is given by 

fl = -/"Vi(*)|2<ty (12) 
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the reflected power is given by 

PT = - r \FS(4>)\2d<P (13) 
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and the transmitted power is given by 

pt = - ['mfi+F.wfd* (i4) 
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The transmission power coefficient is calculated as the ratio of the transmitted power to the incident power. 

A numerical solution for the currents can be obtained using the Method of Moments. The details of the MoM 
solution have been presented previously in.9 Once the currents are known we can calculate the far scattered 
field using the discreet form of equation 10. The far incident field is calculated directly from equation 7. The 
powers, hence the transmission coefficient, can be calculated using equations 12, 13, and 14, once the far fields 
are known. 



Well-conditioned ratio 

Figure 3. Ratio of well-conditioned measurement matrices to total number of measurement matrices 

4. SIMULATION RESULTS AND DISCUSSION 

To investigate the performance of the reconstruction process as a function of the number of holes inside the 
imaging window, we simulated the scenario illustrated in Figure l(right). The image window is divided into 
twenty pixels of equal angular extent <j>p = 7r/200, the angular extent of each hole was about 7r/170, corresponding 
to a hole diameter of 1 mm positioned at a radial distance from the center of revolution of about 58 mm. The 
holes were positioned at a random angular distance from each other on a constant radius. The random angular 
distance was generated as follows 

8. =nöm + 9 (15) 

where 0S is the angular separation distance, 9m is the angular extent of the holes, n is a number between 0.1 
and 6, 0 is a uniformly distributed random variable that takes values between O.Wm and 6(?m. The term n$m 

determines the minimum angular separation distance between two holes. A sequence of 30 holes was generated. 
Several measurement matrices were calculated as the patterns moved across the imaging window and their 
condition number was recorded. Each measurement matrix had dimensions of 20 by 20. For a given minimum 
separation distance not all of the calculated measurement matrices were well-conditioned. We calculated the 
ratio of well-conditioned measurement matrices to the total number of measurement matrices for each minimum 
separation distance n#m. The results are shown in Figure 3. 

We defined a well-conditioned matrix to have a condition number,«, of less than 500. Although this is a large 
condition number it is less than half the average condition number of a 20 by 20 matrix with random elements. 
In addition the mean « of the matrices with K smaller than 500 was around 90 for all of the minimum separations, 
more than 10 times better than a matrix of random coefficients. 

The plot in Figure 3 shows that the number of well-conditioned measurement matrices that can be generated 
given a random placement of holes is larger when the separation between adjacent holes is small, i.e. the number 
of holes in the imaging window is large. This result is to be expected since the variation in the patterns increases 
as the total perimeter length of the the holes inside the imaging window. 

For the line imager we only need to have one measurement matrix so the result above might seem unnecessary 
given that a well-conditioned measurement matrix can be found for any value of ndm, however for a two dimen- 
sional imager the result of Figure 3 is important. It demonstrates the ability of the rotating disk to implement 
equation 1, since many linearly independent measurement matrix rows can be generated in one rotation. 

One infers from the result of Figure 3 that the number of possible well-conditioned measurement matrices 
can be increased by decreasing the size of the holes so that more of them can be placed in the imaging window. 
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Figure 4. Structures for the simulation of the non-linearity of the mask 
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However, both the size of the holes and their minimum separation distance are limited by the physics of the 
structure. As it is shown in7 and in13 choosing a smaller hole diameter limits transmission through the hole and 
some diameters have better transmission than others. Also, as the holes are placed closer to each other, mutual 
coupling between the holes adversely affects the linearity of the mask assumed by equations 1 and 2. These same 
effects are observed for thick slits.8 

The two dimensional analysis presented in Section 3 pertains to a slit geometry. Therefore, it cannot be used 
to obtain design parameters for our device, such as the diameter of the holes, the thickness of the disk, or the 
minimal separation distance for which the linearity is still preserved. We can however, at least qualitatively, 
observe the effect of the hole separation distance on the non-linearity of the measurement. 

We simulated the linearity of a slit mask for the configuration shown in Figure 4.c. The transmitted power 
from the structures in Figures 4.a. and 4.b. was calculated using equation 14. The sum of the two was compared 
with the power transmitted from the structure in Figure 4.c. The depth of the slits dj was set to 2.7A, the width 
of the slits eh was set to 2.1A, and the separation distance d,was varied from 0.1A to 10A. These values were 
chosen to match the dimensions of the experimental setup. We could have selected some other values since the 
two dimensional simulation is only qualitatively and not quantitatively equivalent to the physical structure with 
holes. The extent of the structure was 40A. The incident field was normally incident (</>i = 7r/2) with a tapering 
factor T = 5A and spatially centered at the origin. 
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Figure 5. Results of the linearity analysis (left) when all of the transmitted power is compared; (right) when the transmitted 
power between 262.8 and 277.2 degrees is compared. 

Figure 5 shows the results of the linearity analysis. On the right side we have plotted the percent error 
when the total power transmitted through the structure is collected. This is the linearity error and is computed 
by taking the difference of the transmitted powers and normalizing them by the sum of the powers from the 
structures a and b. The difference is very small with a maximum of two tenths of a percent. We notice that the 



error oscillates around zero with some separations being linear (error is approximately zero) and some not. The 
period of oscillations is one wavelength. The cusps are numerical artifacts due to the large condition number of 
the MoM matrix for the given geometry of structure c. The linearity error decreases as the separation of the slits 
increases indicating that the slits decouple. In13 the authors conclude that the coupling between holes becomes 
insignificant when the ratio of the separation ,measured from the centers of the holes, to the radius of the holes 
is about six. 

Figure 5(right) shows the linearity error when only the power between 262.8 and 277.2 degrees of the far 
field is collected. This error is extremely large but decreases as the distance between separations increases. This 
result is expected since the sum of the powers transmitted through structures a and b ignores the interference 
pattern of the two slits and the far field pattern will be a Gaussian. The power transmitted through structure c 
will display an interference pattern in the far field. Therefore, the transmitted powers will differ in a particular 
section. As the separation distance increases the zeros of the interference pattern come closer together and the 
power is concentrated more and more in the center of the far field, and the difference between the transmitted 
powers decreases. 

Using the linearity results presented in Figure 5(left) we can construct a image scanning scenario where 
the majority of the holes are spaced such that the mask is non-linear (worst case scenario). In the following 
discussions we will refer to the slits in the simulation as holes. In order to have a reference to compare the 
reconstructions with, a singe hole was placed at some distance from the others (approximately 40A) so that we 
could simulate raster scanning. The structure length was 40A.The field incident on the structure was composed 
of two normally incident beams with tapering factor of r = 3 and spatial centers at xi = —5A, j/i = 0 and 
x2 = 3A, j/2 = 0. 
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Figure 6. Results of the image reconstruction simulation using power measurements; (left) when ah of the transmitted 
power is collected; (right) when the transmitted power between 262.8 and 277.2 degrees is collected. 

The results of this simulation, when the measurement data used in the reconstruction consists of all of the 
transmitted power, are shown in Figure 6(left). The top image in Figure 6(left) shows the reconstructions for 
different measurement matrices using the corresponding measurement data. Each column of the image represents 
a reconstruction of the line image. To the left we see the result of the raster scan. The image is normalized 
by the maximum of the raster scan image.   The white space that separates the raster scan images from the 



reconstructed images corresponds to the part of the scan that did not contain holes, hence, the measurement 
matrix was singular. The bottom plot shows the condition number of the measurement matrix, the negative 
values correspond to condition numbers greater than 104. The reconstruction is generally very good and the worst 
reconstruction cases correspond to measurement matrices with a very large condition number. The reconstruction 
however is not perfect and this is attributed to the non-linearity of the measurements. 

If the measurement data used for the reconstruction consists only of part of the transmitted power, the 
reconstruction deteriorates. Figure 6(right) shows the results of this reconstruction. The measurement data 
consists of the transmitted power collected between 262.8 and 277.2 degrees of the far field. Some reconstructions 
are qualitatively similar to the raster scan. The reason for those reconstructions, although the linearity error as 
shown in Figure 5(right) is large, is attributed to the presence of more than two holes diffracting the incident 
energy. The main lobe from the interference pattern of more than two holes is more narrow than the one for two 
holes. Also, more of the energy is concentrated in the main lobe. Hence the collected energy represents more of 
the main lobe and the main lobe represents more of the total energy. Therefore, the non-linearity error is less 
than the error in Figure 5(right). As it is to be expected the reconstructions from the measurement matrices 
with larger condition number are affected the most. 

5. EXPERIMENTAL MEASUREMENTS AND RESULTS 

Using scrounged materials we built a line imager in our lab. The imager and its components are shown in Figure 
7. We used the spindle motor and disk from a 5.25 inch Quantum Bigfoot hard drive. Holes were drilled on 
the disk at a constant radius of 58 mm. A 1 mm drill bit was used to drill 15 holes spaced at random with 
separation distances between 2.3 mm and 5.3 mm. Another hole was drilled about 50 mm arc away from the 
others. This single hole was used for raster scanning. The disk was 1.27 mm thick. We removed the top cover 
and cut a rectangular aperture on the back of the hard drive case so that the signal could be let into the receiver. 
The motor was rotated at a constant velocity of 180 revolutions per minute so that about 750 measurements are 
captured for one revolution. A photo-diode detector was placed in the proximity of the edge of the disk. A piece 
of dark tape was placed on the edge of the disk to obtain a pulse for every revolution. The pulse was used to 
trigger a sweep of the spectrum analyzer (Agilent SCA Spectrum Analyzer AN1996A ) so that we could register 
the measurements with the positions of the holes. The operating frequency of the source receiver pair was 640 
GHz. The signal from the receiver was down-converted to 4.8 GHz and supplied to the spectrum analyzer. The 
optical system consisted of an elliptical mirror with one focus at 1 m and the other at 10 m. The line imager 
was placed on the 1 m side of the mirror with the receiver positioned approximately 100 mm behind the rotating 
disk. The target consisting of a mask in front of the receiver was placed on the side of the 10 m focus. The source 
was placed approximately 0.5 m behind the mask. The mask consisted of two holes cut in a piece of carpet. The 
image of the mask was focused on the line imager and a sweep of data was saved manually onto a flash drive 
from the spectrum analyzer. The saved data was post-processed. 

Figure 7. Picture of the line imager. 
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Figure 8. (Left)results of the image reconstruction using experimental data; (right) corresponding measurement data 

Figure 8(left) shows the results of the reconstruction. The measurement data used for the reconstruction 
are shown to the right. We used regularization when calculating the inverse measurement matrix. This was 
necessary to obtain decent reconstruction. Just like with the simulation results shown in Figure 6, each column 
of the image on the top (left) figure represents a reconstruction of the line image. The partial reconstructions 
that give the appearance of a slant are due to the use of regularization. 

The quality of the reconstruction can be attributed to a couple of factors. Only part of the power is collected 
therefore the reconstruction is noisy. These results agree with the simulations presented in Section 4. Another 
source of error was the wobbling of the disk, although small. Yet another source of error was the lack of accuracy 
in the knowledge of the exact positions of the holes on the disk, leading to inaccurate measurement matrices. 
The holes on the disk were marked at the desired locations and drilled on a 12 inch drill press while the disk was 
held on the bench by hand. Needless to say this was not a precise manufacturing process, and it is a wonder 
that we can reconstruct the image at all. 

It was observed (results not shown here) that the quality of the reconstruction improved when the diameter 
of the holes was increased to 2 mm. This can be attributed to the increased signal (more power was let through 
the holes) and to the fact that the larger holes diffract less than the small ones, so the power was directed more 
towards the receiver. 

6. EXTENSION TO TWO DIMENSIONS 

Figure 9 shows a conceptual sketch of the spatially selective mask device for imaging in two dimensions. Equa- 
tion 1 is valid for both the one-dimensional and two-dimensional imaging problems. In the line image setup 
the arranging of the measurement matrix row elements was obvious. For the two dimensional image the two 
dimensional array of pixels is linearized; each row of the array is concatenated to the end of the previous row. 
Just like for the line imager a full set of measurements can be collected during one full rotation of the disk. 
Therefore, if the disk is rotated at a constant rate of 1800 rotations per minute the imager will produce images 
at a video rates of 30 frames per second. 

An appropriate pixel block for this implementation would be a square.   In that case the entries of the 
measurement matrix can be calculated by the following method. The imaging window is divided into conceptual 
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Figure 9. (Left) Conceptual sketch of the two dimensional imaging device, (right) pixel block divisions 

square blocks as shown in Figure 9(right), each corresponding to an image pixel. Each pattern of holes in the 
imaging window corresponds to one row of the measurement matrix. We obtain different patterns at different 
rotational positions of the disk. For each pixel a Monte Carlo integration method is used to determine the area 
of intercept of that pixel with the holes inside the imaging window. The ratio of the area of intercept to the area 
of the pixel is the entry on the row of the measurement matrix corresponding to that pattern and pixel. 

7. CONCLUSIONS 

We have shown simulation and experimental results supporting a method of image space scanning with high mod- 
ulation levels, high scanning rates, low mechanical complexity, and low cost. We observed that randomly placing 
the holes close to each other and having many of them in the imaging window, produces more well-conditioned 
measurement matrices than does placing them far and having less of them in the imaging window. However, as 
the holes come closer to each other non-linearity effects are observed. Also the transmission through the holes is 
limited by the waveguide-like behavior. Simulations of linear measurements on a image were performed using a 
two dimensional electromagnetic analysis approximating the holes with infinite slits. Although the electromag- 
netic analysis could not be used to design the device it satisfactorily explained the experimental observations 
qualitatively. From the results of Figures 6 we conclude that for the best performance we need to collect all 
of the energy that is transmitted through the holes. The same image formation methodology used for the line 
imager can be extrapolated to a two-dimensional imager and we have introduced the required adaptations to do 
so. 
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Abstract 
The performance of a binary output beam break sensor is characterized by its information rate per pixel. 

A physics based model utilizes target and noise spectra to establish the channel capacity and the 

realizable rate. This model enables the determination of a system of sensors performance metric, 

suitable for optimizing system performance. A method of optimizing sensor design within the system of 

sensors is discussed. Numerical results from the model illustrate the process for a beam break sensor 

such as one used on garage door openers. Also, the numerical results coupled with classification 

performance data may quantify the value of information for such a sensor, as discussed in the paper. 

An uncertainty analysis is presented for a beam break sensor used to estimate a target's height to width 

ratio, useful for human/other classification. The uncertainty analysis suggests some quantitative 

method of determining the minimum number of pixels desired. 

Introduction 
Beam break sensors are an example of a class of sensors that provide profile information about a target 

[Russomanno, 2010]. Such profiling sensors may provide sufficient information for some applications or 

they may be part of a system of sensors. It is important for optimizing performance of a system of 

sensors that a system performance metric be available. Such a metric enables system performance 

optimization for many aspects of the system. Examples include sensor selection from a suite of 

available sensors, sensor design within given types of sensors for the network or algorithm choices for 

automatic processing of some sensor outputs. 

In general, systems of sensors are likely to utilize automated processing at a variety of levels. Such 

processing might be in the form of image enhancement, image fusion for human observers or classifiers 

that provide cues for human observers. This paper on profiling sensors considers the use of a classifier 

but does not consider image fusion or enhancement. 

Two metrics are often used for imaging sensors [Driggers, 1998]. NIIRS (National Imagery Information 

Rating Scale) is often used in surveillance applications, and the Targeting Task Performance metric is 

often used for tactical imagers. An information theoretic metric (information rate in bits/pixel) is also 

commonly used. At their foundations lie the same sensor parameters, resolution and signal to noise 

ratio. All are also active areas for research [Irvine, 2007, Westover, 2008, Vollmerhausen, 2006]. Each 



has its own domain of applicability, with some overlap. For the beam break sensor presented here, we 

use information rate as the metric for modeling the beam break profiling sensor. One reason is that 

information rate does not implicitly incorporate a model for the human observer. However, some 

researchers have modeled human observer performance in terms of information rate. This flexibility 

allows one to model algorithms and human observers within a system. Furthermore, the point of view 

is not from above (as with NIIRS) and the task is not quite in the realm of 

detection/recognition/identification (as with Targeting Task Performance metric). So among existing 

metrics information rate is the metric immediately applicable to profiling sensors as part of a system. 

Imaging sensors and other types of sensor can also be modeled using information rate as a metric within 

the information theoretic framework [Huck, 1996]. This facilitates system level modeling by utilizing a 

common metric. Also the end numerical results in bits per pixel have a more general understanding 

than most other metrics. 

In summary the work presented in this paper represents a significant step in the direction of modeling a 

system of sensors that includes sensors of various types. These types are likely to include an imaging 

sensor supplemented perhaps by profiling, radar, seismic and acoustic sensors as well as intelligence 

information. We expect the system of sensors to include automated processing of sensor output as well 

as human observers using imagery. Specifically the paper presents the modeling process for the 

information rate of a binary output beam break profiling sensor.  Numerical results illustrate the model. 

Additional discussions show how the results are important to sensor system modeling and optimization. 

Binary Output Beam Break Sensor 
As with imaging sensors there are many configurations of profiling sensors. Each has its own unique 

characteristics as well as sharing characteristics with a general profiling sensor. The binary output beam 

break sensor is chosen as being representative of the broader class of profiling sensors. The model 

presented here captures the more general aspects of profiling sensors. The model has sufficient fidelity, 

accuracy and complexity to illustrate the behavior of the sensor within a system of sensors. This desire 

for a system level model leads to an information theoretic model. Any sensor can be modeled from that 

viewpoint, making information rate a common metric for any sensor in the network. 

A binary output beam break sensor has a two state output indicating that a beam is blocked or not 

blocked. It was proposed as a low cost sensor that could distinguish humans from animals by assessing 

their profiles. Several other versions of profiling sensors have been built, generally passive versions. 

The two state profiles can also result from applying a threshold to detector outputs with greater bit 

depths. However, the original beam break sensor was inspired by the common garage door safety 

detector, and the notional sensor modeled here is that type of profiling sensor. It consists of a 

transmitter module and a detector module whose output is either high or low. We arbitrarily choose 

the presence of the target to be a high state and the absence of the target to be the low state. 

In its simplest implementation the transmitter/detector module pair is replicated in the vertical 

direction, creating a linear array of detectors. Other deployments are also possible. The binary detector 

outputs are sampled in time. The target must move through the beams to create its profile. Targets are 

assumed to move in the horizontal direction, breaking the separate beams as the target passes through 



  

the sensor. The temporal sampling coupled with the spatial sampling in the vertical direction produces 

data that is easily interpreted as a two dimensional target profile. 

Each detector and transmitter has its own field of view. Figure 1 depicts a general situation where the 

detector and transmitter fields of view differ. For our example sensor the two are the same. The figure 

shows a slice of the three dimensional field of view cones. That means the vertical arrows are slices of 

an edge. For discussion we choose to think of Figure 1 as a top view. That means a vertical edge is 

being moved horizontally into the field of view (at one of three locations in Figure 1.) For an analog 

system the detector response diminishes as soon as the edge reduces the received radiation. Figure 2 

shows a simulated analog edge response with added noise. It also demonstrates the one-to-one 

relationship between edge position within the field of view and the analog detector output. A binary 

output sensor does not show any change until the moving edge has blocked a threshold amount of 

radiation. Fifty percent blockage is a convenient threshold since the output change occurs with the edge 

at or near the optical axis. Therefore, the binary output toggles as the edge reaches the optical axis. 

Figure 1 illustrates that the amount of edge movement within the analog edge response varies with the 

edge location between the transmitter and the detector. It also shows that the maximum field of view 

has an upper bound of the larger angular field of view times half the separation distance between 

transmitter and receiver. 

The geometrical complications are minimized in our example system which has equal detector and 

transmitter fields of view. And we choose to locate the target edge midway between the transmitter 

and receiver. A fifty percent threshold is also assumed. These conditions match the experimental 

conditions for the garage door opener safety switch used to obtain numerical results. 

In an array of such transmitter/detector pairs, the fields of view of adjacent pairs may overlap. This 

overlap increases the transmitted power seen by any particular detector. The additional power from 

other transmitters varies with the configuration chosen for the array. Detectors near the middle of a 

linear vertical array (our notional sensor array) receive extra optical radiation from transmitters above 

and below. Those detectors near the top or bottom receive radiation that is not symmetrical in the 

vertical direction. Regardless of the total received power, the binary output sensor toggles when the 

power is reduced by fifty percent of its unblocked value. Therefore our notional model assumes the 

detector/transmitter pairs are isolated from the other pairs that form the profiling sensor array. 

The sensor output can be used as input to an automated classification algorithm [Chari, 2008.] 

However, viewing it in an image format provides insight to typical uses. Figure 3 shows three profile 

images for illustration purposes and to help understand the validity of assumptions made in the 

analytical modeling process that follows. 

Model for Binary Output Beam Break Sensor 
The discussion above suggests the following characteristics for the binary output sensor and targets in 

our model. Sampling in the vertical direction is achieved by separate transmitter/detector pairs. 

Sampling in the horizontal direction occurs by temporally sampling the binary output state of the 

detectors. Block targets move only horizontally while passing the vertical line of sensors. The detectors 



change states when the block obscures half of the optical power being received by the detectors with no 

obscuration. Targets too small to block half of the received radiation will not be detected by the 

profiling sensor and result in no information from the sensor. We arbitrarily choose the blocked state to 

be binary output 1 and the unblocked state to be 0. The threshold response changes the analog edge 

response of Figure 2 to a sharp transition from 0 to 1 at the optical axis (0.5 position in Figure 2). 

These properties imply a two dimensional output from the array, a spatial output in the vertical 

direction and a temporal output. Instead of using spatial/temporal pixels, the horizontal motion of the 

target coupled with the temporal sampling is modeled as a spatial pixel. Pixel size in the horizontal 

direction is determined by the sample rate and the speed of the target. In effect the model equivalently 

locates a stationary target within a horizontal field of view. The equivalent horizontal field of view is 

determined by the speed of the target, the sample rate, and the period of time being considered. The 

period is conveniently chosen to include both edges of the target. Most often this sensor is used for 

automated human/other classification. Therefore, numerical examples will draw from this scenario. 

Information Rate Equivalents for Sensors 
Information rate as we use the term does not include the actual communication channel used to 

transmit information from the sensor to the user. Models for the communication channel are highly 

developed and therefore not addressed here. Our interest is in the sensor's effect on the information in 

a spatial scene as that spatial information is converted from optical radiation to an electronic signal. 

Consequently, spatial frequency domain techniques provide the tools for characterizing the information 

capabilities of imaging sensors and profiling sensors. The two dimensional character of the information 

is modeled by assuming separable dimensions. 

The major factors in information transfer by an imaging sensor include blur, noise and dynamic range. 

In addition to imaging blur, blur is sometimes used to model atmospheric effects such as turbulence. 

Blur is also intimately linked to resolution which leads to the critical parameter of pixels on the target. 

Noise arises from a number of sources, but includes detector noise, temporal quantization noise, spatial 

sampling noise and can include speckle for laser illuminated scenes. Noise at the system level is affected 

by temporal factors such as frame rate/integration time. Dynamic range can be affected by blur, but is 

also impacted by pedestal removal and automatic gain control. Many modern imaging sensors use 

sophisticated algorithms to process images and usually include automated control of the dynamic range. 

These factors must be included in our model for the binary output beam bread sensor. Some are 

treated by our assumptions that establish the domain of applicability for the information theoretic 

model. For example we assume the noise to be additive white noise. 

Traditional imaging sensors with focal plane arrays for detectors are well modeled by the information 

rate metric [Huck, 1996]. Both the information rate and channel capacity arise from the following 

fundamental expression for the information rate. The expressions here are for a single sided bandwidth 

B. 



H is the average information rate in bits for each pixel (with the base 2 logarithm). Stgt(iqj is the power 

spectral density of the region of interest or target as displayed (or in the image plane) including noise 

and sensor degradations. N(t;,ri) is the power spectral density of the "noise." Noise represents the 

threshold level of the signal and can be treated as this more general term. For example, if the above 

equation is applied with human observers, the denominator term might become the contrast threshold 

function rather than just detector or system noise. $,n are the spatial frequency variables in appropriate 

units such as cycles per pixel. B represents the two dimensional bandwidth. For digital imagery the 

bandwidth is limited by the half sample frequency (0.5 cycles/pixel in each dimension.) Note that for 

separable functions (horizontal and vertical directions) the total information rate is the sum of the rates 

for each dimension. 

The channel capacity results from the information rate under ideal assumptions. These assumptions are 

never met by real images since the target spectrum is assumed to be constant across the bandwidth. 

Such a spectrum is white noise to an observer with each pixel being uncorrelated with the adjacent 

pixels. A white spectrum might be approached by an ensemble of images or targets. 5 is assumed to 

consist of a signal spectrum with additive noise and no sensor degradation. Under the channel capacity 

assumptions, the upper bound of H becomes the following. 

C = B\og(l+SNR2) (1.2) 

C is the channel capacity and SNR is the signal to noise ratio. The square of SNR is the power signal to 

noise ratio. In this case the term signal does not include the additive noise. The one accounts for the 

additive noise. This equation implies the physical information limit for the system is the number of 

resolvable levels of signal (signal power divided by noise power) times the bandwidth of the channel. 

The encoding of the information is ideal and C is in bits/pixel. 

For the binary output beam break sensor it is convenient to think of locating an edge in one dimension. 

The sensor output encodes the time that the edge passes the detector. From an information standpoint 

this action is equivalent to locating the edge in space. Refer to Figure 2 to translate location into 

detector output. The threshold results in digital output with an edge at the optical axis, but that 

location is made uncertain by the noise. Since the detector binary output toggles at the midpoint of the 

analog edge response, the signal level corresponds to half of the beam width. The channel capacity 

represents the limit to which we can know the location within the analog edge response. Keep in mind 

that the channel capacity assumes a white spectrum which is equivalent to locating a multitude of edges 

within the analog edge response. No location information results when the detector output remains 

fixed in either state, blocked or unblocked. Edge location information only results from a transition. 

Channel capacity then represents the number of bits required to encode the maximum number of 

different positions within the analog edge response that the sensor can isolate based on signal level and 

noise level. 

Information Rate Model for Binary Output Beam Break Sensor 
The information theoretic model is based on Eqn. 1. As suggested above we choose to represent the 

horizontal direction as spatial pixels. The target speed times the sample period determines the size of 



the pixels. Therefore Eq. 1 is directly applicable to our beam break sensor. The linear systems model 

requires some assumptions regarding the threshold process which is not linear. For our region of 

interest, we choose the target itself with only enough background pixels to model the transitions from 

unblocked to blocked. Our target is a rectangular block that moves in the horizontal direction only. 

While an edge target is interesting, it results in a spectrum that violates assumptions inherent in Eq. 1, 

namely having a form that has a defined logarithm. One could blur the ideal edge, but the block shape 

more nearly matches the typical applications of classification based on a profile.   With these thoughts in 

mind, the information rate metric for the horizontal direction is given by the following. 
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The limits on the integral are in cycles per pixel where the upper limit is the half sample frequency. 

Consequently, a similar expression is also used for Hy, the information rate metric for the vertical 

direction. The separable system assumption means the total information rate is the sum of the two 

directional rates. In practice the pixel size is rarely the same in the two directions, but the limits are the 

same in cycles per pixel. 7G7"is the target spectrum and the square represents the power density. For 

an ideal block target, the spectrum is the familiar sine function. The same convention is used for the 

noise spectrum N and MTF represents the sensor degradations such as blur. 

The threshold process model is incorporated through the following approach. Figure 2 represents the 

analog output edge response and shows the typical blur. However, the digital output with a threshold 

at fifty per cent blocked is a sudden transition, say from 0 unblocked to 1 for blocked condition. As a 

result the blur does not impact the digital output. Therefore, if one is using an automated classification 

algorithm, the sensor degradation function is set to one across the spectrum. If one converts the digital 

output to analog, a reconstruction blur occurs. But the blur is mostly within a single sample period 

except for some ringing, Its apparent from the example system discussed below that the threshold 

process significantly reduces the effect of blur, even for analog outputs. 

Example Beam Break Sensor 
Eqn. 3 provides a general model for determining the information rate metric for a binary output beam 

break sensor. This section applies Eqn. 3 to an example system. While the chosen system is typical, the 

ensemble of possible sensors, detector transmitter separation, etc. is large. However, the purpose of 

illustrating the process is well served by a numerical example. 

Experiments to determine sensor parameters include a repeated trials approach. An edge target (tall, 

wide block) is moved through the sensor repeatedly and the position that changes the binary state of 

the sensor output is recorded. The standard deviation of the edge location that toggles the sensor is the 

edge location uncertainty. For vertical uncertainty the vertical location of the block is varied. The 

variance of the edge location that toggles an adjacent detector is the vertical edge location uncertainty. 



Actual measurements on a garage door safety sensor confirm the advantages of a binary output device 

in reducing edge location uncertainty. This particular sensor uses 1.8 cm diameter apertures for 

transmitter and detector/receiver, which are spaced 2.7 m apart. The threshold level is approximately 

50%, an optimum choice for detection at the optical axis independent of target location between the 

transmitter and receiver. Both the field of view of the detector and the beam width from the 

transmitter are approximately 1 m full width at 2.7 m distance. The uncertainty in edge location is 0.5 

mm (+ 0.2 mm). The symmetry of the device means this uncertainty is the same for both horizontal and 

vertical directions. The edge location lies on the optical axis, within the uncertainty of the determining 

the position of the optical axis (± 1 mm). 

Additional uncertainty arises from the temporal sampling of a moving target (horizontal) and the spatial 

sampling from using an array of separate detectors (vertical.) For the horizontal direction assume a 1 

m/sec speed. This is a reasonable speed for walking and it is also easy to scale to different speeds. 

Sampling at one thousand samples per second yields an equivalent spatial pixel size of 1mm. Assuming 

a uniform distribution of edge location about any given sample, the variance is then 1 mm squared 

divided by twelve. The variances add since sampling uncertainty is independent of the edge location 

variance. 

Sampling in the vertical direction is accomplished by different sensors, so pixel size is the physical 

distance between the sensors. We assume a typical value of 100 mm as the sample spacing. Therefore, 

the variance is 100 cm2 divided by twelve. The sampling uncertainty in the vertical direction is also 

independent of the edge location uncertainty. The variances add, but the sampling uncertainty is the 

dominant uncertainty for the vertical direction. 

Eqn. 2 for the channel capacity can now be used for the example sensor. We assume a linear 

relationship between location of the edge and the analog detector output (see Figure 2). One can then 

transform edge location into fractional signal level. In Eqns. 2 and 3 all powers occur in ratios. 

Therefore, fractional signal level (edge location) is sufficient information for calculating channel capacity 

and realizable information rates. The beam size/detector field of view at the midpoint location is 500 

mm. The detector output toggles at with the edge at 250 mm from the beam edge, that is, it toggles at 

optical axis. Therefore the signal level is half of the unblocked radiation level, or 0.5 fractional signal 

level. The noise is the standard deviation of the measured values from the previous paragraphs. For the 

horizontal direction, the noise is 0.315 mm (6.3 x 10"4 fractional signal). Eqn. 2 then yields 9.6 bits per 

pixel for the channel capacity. 

The channel capacity for the vertical direction is obtained from the same signal level, but an increased 

noise from the larger sample spacing. The signal level (in position units) is 250 mm while the noise is 

28.9 mm (100 mm detector separation). This yields a channel capacity of 3.1 bits per pixel. With a 

separable model the two add for a total channel capacity of 12.7 bits per pixel. 

Eqn. 3 for the realizable rate is applied through selecting a target and including the sensor degradation if 

appropriate. The channel capacity is based on a white spectrum which is unrealistic for a profiling 

sensor. Consequently, we choose a block with typical size (700 mm wide by 1400 mm high) for 



human/other animals to illustrate the model and obtain a typical realizable rate. We first consider a 

digital output and set the MTF to 1 for all spatial frequencies. The integration indicated in Eqn. 3 is 

carried out numerically and results in a realizable rate of 0.9 bits per pixel for the horizontal direction 

and 0.5 bits per pixel for the vertical direction. 

Sensor degradations are included through the MTF function. To illustrate we now consider an analog 

output and use a reconstruction blur for the degradation. The blur is assumed to be only between the 

digital edge (pixel value 1) and the nearest off pixel (value 0.) The fidelity of the reconstruction 

improves only slightly as the number of pixels on the target increase from a few to several hundred. 

With our numerical assumptions we have 500 pixels on the target in the horizontal direction and 14 

samples in the vertical direction. We use the following Gaussian function fit to the reconstructed analog 

signal between the two pixels defining the edge. 

MTFx^) = exp(-27C2a2
b,uJ

2) (1.4) 

The notation is for the horizontal direction and a similar function is used for the vertical direction. The 

fit determines the best value of ob|Urx. To within the accuracy of measured values, the best fit is the pixel 

separation divided by 2.5, for either vertical or horizontal directions. Figures 4 and 5 illustrate the signal 

spectrum and the MTF1 for the horizontal and vertical directions respectively. The target plus noise 

spectra have no zeros at the minima, seen more clearly in Figure 5. Applying the degradation does 

reduce the SNR below 1 near some of the minima. Those regions are excluded from the integration 

since the logarithm is undefined there. The resulting realizable rates with this reconstruction blur 

degradation are 0.7 bits per pixel in the horizontal direction and 0.4 bits per pixel in the vertical 

direction. 

The average information rate coupled with the number of pixels on the target provides an estimate of 

the information content. The minimum number of pixels for successful classification will be discussed 

below. 

Additional Results of Interest from the Information Theoretic Model 
Quantifying the value of information might be accomplished by the process described next. Consider a 

two sensor system that includes a highly capable intelligence/surveillance/reconnaissance (ISR) imager. 

The second sensor is much more limited, perhaps a profiling sensor as modeled above. We choose to 

think of the second sensor as augmenting the information from the ISR imager and we attempt to 

quantify the value of the additional information. 

Our notional ISR sensor has one million pixels and a ground sample distance of 0.5 meters. A single 

static image can be analyzed for the average information rate within a region of interest that includes 

the profiling sensor. With just this single static image, it is difficult to even locate a human in the image. 

However, suppose the profiling sensor has classified an object as a human just prior to the acquisition of 

the ISR image. This additional information perhaps enables one to classify a blob of pixels as a human. 



The information theoretic model presented here estimates the information rate for a profiling sensor. 

Such sensors have provided excellent classification accuracy in hundreds of examples of human/animal 

data. Consequently, the data rate coupled with the number of pixels required provides an estimate of 

the information value of the added classification result from the profiling sensor. This increased 

information could be also be modeled as an increased ISR resolution, perhaps an equivalent ground 

sample distance of 0.1 meters within that small region of interest. This approach to establishing the 

value of information can be further developed, as discussed in the conclusion as a future effort. Of 

course if the ISR sensor video stream is available, one can detect a moving object the size of a human 

without additional sensors. However, the typical ISR sensor view point is from above, making 

human/other classification somewhat harder. The example is chosen to illustrate the value of added 

information from additional sensors, not to discuss sensor selection. 

The information rate from the information theoretic model is given as an average per pixel, so one must 

consider how many pixels are required to execute a task such as classification. One approach to 

establishing the number of pixels required for classification is to use uncertainty analysis. The primary 

feature for human/animal classification is the height to width ratio. This means the number of pixels 

required can be estimated from the required accuracy of measuring the height and width. One uses the 

same "noise" estimates to get the standard deviation used in uncertainty discussions. Our example 

system will be used for the numerical results. Our goal is uncertainty of the ratio of height to width, not 

the individual parameters of height and width. 

In equation form, the following equation describes the uncertainty for the height to width ratio. First 

order uncertainty of the ratio adds the fractional uncertainties of the height and width. 

h + Ah 

w + Aw 

(h\ 

\WJ 

f     Ah^ 
1 + — 

h 

1 + 
V 

Aw 
w 

w){      h      w 
(1.5) 

h and ware height and width, Ah and Aw are the uncertainties, and H.O.T. denotes terms of second 

order and higher in the fractional uncertainties bh/h and Aw/w. A minus sign in front of the width 

fractional uncertainty has been replaced by a plus sign, appropriate for combining uncertainties. Two 

edges must be located to measure height and width although the ground might form one edge for 

height. For numerical purposes we assume the uncertainty for each edge location measurement is 

independent of the uncertainty for any other edge location measurement. 

Our example system provides an abundance of samples in the horizontal direction so the uncertainty is 

dominated by the vertical uncertainty where Ah is 40.8 mm (two edges). For some insight the minimum 

size required to block 50% of the radiation is somewhat less than 150 mm (136 mm by analysis.) Four 

pixels (400 mm) of height reduces the vertical fractional uncertainty to approximately 0.1 or 10%. The 

minimum number of pixels in the horizontal direction is overdesigned in the example system. Therefore 

for estimating the minimum number of pixels, we create a notional system with a horizontal pixel 

spacing of 100 mm. This redesigned pixel size will have the same horizontal uncertainty as the vertical 



— 

direction. So it is suggested that one use four pixels minimum, corresponding to a 400 mm target size. 

Such a design accommodates height to width ratios with a maximum of 4 and a minimum of V*. This 4 x 

4 pattern yields 16 pixels total and a reasonable uncertainty. Few moving objects are square, so fewer 

than 16 pixels might suffice. A 3x3 pattern is obtained using Johnson's criteria for recognition [Johnson, 

1958] with Hoist's modification for low clutter [Hoist, 1995], The typical sized block target used in this 

effort produces 14 x 7 pixels with 100 mm horizontal pixels or approximately 100 pixels. The system 

used for data collections is intentionally overdesigned to accomplish studies that classify more than two 

classes, e.g. humans, animals, humans with backpacks or humans with weapons. 

These considerations, uncertainty analysis and minimum target sizes that are detected, suggest that 16 

pixels or fewer may be sufficient. However, the pixels must be sized such that approximately 4 pixels 

are across each dimension of the target. The edges are the significant feature. Adding many more 

pixels that are highly correlated does not add much information. The number of pixels on target has a 

slightly different connotation with profiling sensors as contrasted with imaging sensors. More pixels in 

an imaging system may provide useful intra-target information. In a profile there is essentially no intra- 

target information. Obviously more pixels and smaller pixels can provide more detail in the outline of 

the target, even in the profiling sensor [Chari, 2010]. 

Conclusion and Future Effort 
This paper describes a process for obtaining the information rate per pixel of a profiling sensor. In 

effect, a profiling sensor provides information at transitions. For example, the binary output beam 

break sensor makes a transition from 0 to 1 or from 1 to 0. The location of these transitions represents 

the information content so a finer sampling produces more information, but the sampling is limited by 

the noise level. A block target is used to illustrate the process and numerical results are given. 

One motivation for developing the information theoretic model is to enable the optimization of sensor 

design within a system of sensors. One approach to the optimization is suggested by the convex 

optimization technique [Joshi, 2009], One considers a new design to simply be an additional sensor 

available to be "selected" for use by the system. Variations of a particular parameter create new 

sensors that are possibly available. The optimization technique then chooses from all the possible 

designs being considered as a sensor selection process. Information rate is envisioned as the metric that 

ties all of the sensors together in a system. This enables one to "design" a particular sensor so that the 

system level performance is optimum, at least by some chosen criterion. 

Future efforts include expanding the model to include passive profiling sensors. This category includes 

different approaches, one of which is In effect an image processing technique. Consequently, the 

information throughput for an image processing algorithm can result from the modeling effort. Other 

approaches utilize linear arrays. As shown here the moving targets are scanning themselves when they 

pass through the field of view of the linear array. Therefore, the process presented in this paper should 

be directly applicable to this particular type of passive sensor. 

In some sense the numerical results coupled with classification algorithm performance may provide an 

estimate of the value of information for this classification task. This points the way to creating a table of 



tasks with the estimated value of information associated with successful completion of the task. One 

could use the table to estimate the value of information not directly in the table. The user either finds 

an equivalent task in the table or "brackets" the task by finding a task slightly easier and another slightly 

harder from the table. The NIIRS metric is often structured this way. One could develop such a table by 

utilizing human perception studies, both existing results and new ones conducted for this purpose. 
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Figurel A top view depicts the detector field of view and the transmitter beam width 
for a beam break sensor. The arrows represent edges being moved into the field of view. At 
position 1 the detector field of view limits the edge detection. At position 3 the transmitter 
beam width is the limit It is apparent the amount of edge movement required for a detector 
output change depends on the edge location between the detector and the transmitter. 
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Normalized Position Within Edge Response 

Figure 2 This figure simulates the analog detector response to an edge moving across 
the field of view with added noise. It demonstrates that edge position within the field of 
view has a one-to-one relationship with fractional optical power, except for noise. 

Human with backpack Pony Human without backpack 

Figure 3 Output from the binary output beam bread sensor is displaced in a two 
dimensional format. Hundreds of these examples have been collected for testing profiling 
sensors and classification algorithms for processing their output data. 
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Figure 4 This figure illustrates the example system quantities used to find a numerical value 
for the information rate. The target plus noise power spectrum is normalized to one for 
illustration (actual peak is 2502 mm2.) The horizontal axis stops at 0.005 cy/mm whereas 
the integration goes to 0.5 cy/mm. The horizontal scale as chosen matches that for the 
vertical direction shown in Figure 5. The solid blue curve is the MTF2 and the dotted red 
curve shows the target spectrum normalized to a peak value of 1. 
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Figure 5 The solid blue curve is the square of the MTF and the dotted red curve is the 
target power plus the noise power. For this vertical direction the integration ends at 5xl03 

cycles per millimeter. 



Equation Chapter 5 Section SPerformance Model for Micro-resonator 
Sensors Leading to Information Rate 
A common feature to many micro resonator based sensors is a sphere being deformed. That 

deformation changes the resonant wavelength. The resulting change in resonant wavelength is then 

detected. The detection is accomplished by noting the resonant wavelength shift from before and after 

the deformation. The resonance wavelength is the point of greatest loss from the transmitted beam. 

The relationship between the deformation and the individual "force" being measured must be modeled. 

Here "force" means field quantity being sensed as well as force. This elasticity model depends on 

materials and the resonator geometry. Much of this elasticity modeling is already available and is 

summarized well in [1]. Their model relates the force being measured to the change in wavelength of 

the resonant cavity. Essentially this is the model of the common feature to those sensors of interest. 

The model presented in [1] does not treat the statistical aspects of the sensor. For example, what are 

the noise sources in laser source including its current driver? How much wavelength jitter can be 

expected from the laser diode? Similarly, we need to model the detector noise. 

We want to also to model the digitization issues of bit depth and dynamic range and sampling noise. 

The actual signal processing reported in [1] is a correlation of the model pattern before the force and 

after the force. The correlation will reveal the shift and this shift can be expressed as a wavelength shift. 

The model as presented in [1] is an analog model. 

Shapes other than spherical have been studied for potential use in micro-resonator sensors. Perhaps 

one can be creative with the basic spherical shape. Is there an optimal shape that might even be 

different for different sensing modalities? 

The model in [1] uses a first order ray model for the resonance. A more sophisticated (complicated) 

model would use the electromagnetic fields inside the resonator so that any mode effects on the 

resonance are included. The em fields inside the cavity for some cavity shapes are available in the 

literature [2], For example, prolate (and oblate) spheroidal shapes are two important cases that are 

already solved [2], However, the first order ray model appears to be very successful. This is likely due to 

the fact that the spheres being used are much larger than the resonant wavelength. If future work 

involves smaller spheres, the ray model might not be as successful. The smallest mode volume 

theoretically possible is on the order of A3 [3]. 

To summarize, the performance model for microresonator sensors has three parts, the elasticity model 

relating force to deformation, the resonance model relating deformation to wavelength change, and the 

signal processing and noise model. 



5.1     Elasticity Model 
loppolo et al. summarize the elasticity of the sphere and its response to a force from rigid plates that are 

diametrically opposite[l]. The solutions they reference are for a fairly rigid material and/or a small force 

and do not apply where the plates touch the sphere (squashed flat region). In loppolo's coordinate 

system (typical spherical coordinates), there is symmetry with respect to $ and variation in the polar 

angle 6 and the radius r. What is varying is the displacement u of a given point within the sphere and 

the pressure plates are at the poles, 9 = 0 and 9 = n. 

They begin with the Navier equation for the displacement (strain) of a given point. 

VW—!— VV-w = 0 (5.1) 
l-2v 

v is the Poisson ratio. The Poisson ratio relates stress and strain in directions perpendicular to the force. 

Squashing at the poles causes bulging at the equator, 9 = n/2, and the Poisson ratio models that effect. 

With the azimuthal symmetry the solution is given by 

ur=^X.An{n + \){n-2 + 4v)rn*+B„nr"-'yn{cosd) (5.2) 

An and Bn are determined from boundary conditions, but will be related to another constant, H„, before 

applying the conditions. Pn(cosd) denote the Legendre polynomials of order n. 

The resonance condition for the micro resonator is that a phase shift of an integral multiple of 2n occur 

within the resonator. The authors use the ray model and the assumption that the circumference of the 

sphere is the path. That leads to the following equation. 

2nn0a = kX (5.3) 

a is the radius of the sphere and A is the freespace wavelength. Since we are interested in shifts in the 

resonant wavelength, the authors take the differential change and write the following. 

(5.4) 

The change in the index of refraction is a result of a force (stress) at the point being considered. 

Consequently, the strain result and the shear modulus of the material are used to obtain the stress. 

Eqn.(5.5) shows only the rr component. The other components are not relevant under the assumptions 

for this analysis. 

a„ =2G^[A,,(n + \)(n2-n-2-2v)rn +Bnn(n-l)rn-2~\Pn (cos0) (5.5) 
n=0 

dX dnQ da   = + — 
X "o a 



By considering the interface between the plates applying the force and the sphere itself, there is no 

"rolling" of the material. This means the boundary conditions are as follows. 

M*)= 
\-p{6)   0<6<d0m&K-e0<d<n 

0 eQ<e<K-e0 

(5.6) 

90 is the greatest value of 6 for which the contacting plate touches the sphere. Similarly, a0 is the radius 

of the contact area between the plates and the sphere, that is, from the polar axis to point on the 

surface of the sphere where the pressure plate contact ends. The expression for a0 follows. 

ao = 
3Fa(l-v2) 

-il/3 

4£ 
(5.7) 

E is Young's modulus for the material and a is the radius of the sphere. The expression for pressure 

distribution under the contacting plate is given by the following. 

3F 
p(e) = £jtä-*™2W Ina, 

(5.8) 

The symmetry of this arrangement yields a deformation that does not vary with the azimuthal angle $ 

and is an even function with respect to 6 (about 6 equal to Jt/2). As a result the expansion of Eqn (5.9) 

uses only the even orders of the Legendre polynomials. 

°n(") = lHnPn(cOSd) (5.9) 
H=0 

The coefficients H„ are found by invoking the orthogonality of the Legendre polynomials. The result 

follows. 

Hn=(An + \)-^-r f° Ja2
0-a2sm2(d)Pn(cos6)sinddd 

iKCC^ Jei 
(5.10) 

The integral is evaluated numerically for a specific example. Some details of the numerical evaluation 

are presented in Appendix A for this chapter. 

Once the set of Hn is obtained, the An and Bn in Eqn (5.2) can be found. The following expressions for A„ 

and Bn are obtained by using Eqn (5.9) and Eqn(5.5) to satisfy the boundary conditions in Eqns (5.6), 

(5.7) and (5.8). 

A = 
H. 

2Ga" (« + 1)(«2 -n-2-2v)-n(n2 + 2n-l + 2v) 
(5.11) 
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2G\(n + \)(n2 -n-2-2v)-n(n2 + 2n-l + 2v) 

(n2 + 2n-l + 2v)a2-n 

x^ ——-L  (5.12) 
(n-l) 

(n2 + 2n-\ + 2v)a2 

(n-l) 

The a" factor in both An and Bn is associated with the rn factor in Eqn (5.5) to avoid a numerical disaster 

as n increases. For the cases of interest, a is on the order of hundreds of micrometers. Therefore, as a is 

raised to higher and higher powers of n, the values of An and B„ grow larger and larger. 

5.2     Signal Processing and Noise Model 
The feature extracted from the signal is the resonant wavelength shift caused by a force. The shift is 

obtained by processing the output from the photodetector. That output shows more than a single 

mode, so there is a pattern of minima in the detector output. The ramp in the output due to the current 

ramp is removed from the data. The entire pattern shifts as a force is applied to the resonator. 

Correlation is used to measure the amount the pattern shifts in response to the force. Most published 

results use a large signal so that signal processing uncertainty and noise is not likely significant. For field 

applications, however, minimizing power may result in operating with a low signal-to-noise ratio. 

Hence, the current section models the major contributors to the uncertainty in the data output. 

Actually, wavelength is not measured, but rather a current level from a ramp used to drive the laser 

diode. Expressing the shift in wavelength is the traditional way of expressing the change. As a result of 

this choice, temporal noise (in the laser driver and in the photodetector) is converted to wavelength 

through the calibration curve relating current and wavelength for the laser. For illustration purposes the 

conversion factor of 5 picometers per milliamp will be used. 

The graphic below illustrates the major factors included in the signal processing and noise model. 
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Figure 5.1       This overall view shows the factors included in the signal processing and noise 
model. 
For combining noise sources, the independence of the various sources of noise allows us to add the 

individual fractional variances. Or, if each noise is converted to the same units (such as nm), the 

variances may be added. The overall standard deviation is then the square root of the variances. In the 

example below, all noise terms are converted to equivalent wavelength. Eqns (5.13), (5.14) and (5.15) 

summarize the noise and uncertainty in the signal processing and noise model. Other terms can be 

added and some of these can be deleted as the model is applied to specific cases. 

IaserNoise Var = powerNoise Var + freqNoise Var + 

driverNoiseVar + sourceSamplingNoiseVar 

detSigProcVar = detTempNoiseVar + sampleNoiseVar 

+dipSeparationProcessing Var 

var = laserNoiseVar + detSigProcVar 

(5.13) 

(5.14) 

(5.15) 

This model implicitly assumes that the signal processing takes place at the sensor. That means the 

output of the signal processing step is the end of the model. There is not a transmission model for the 

noise and corruption that occurs in transmitting the data. Other modes of operation such as 

transmitting the detector output are possible. The model can be adapted to end the sensor part of the 

model at the appropriate step. One may need to add a transmission model. 



The divisions in the model are arbitrary. The dip separation is the feature extracted from the sensor. It 

is the shift in wavelength of the dips or minima in the power measured by the detector. 

5.3     Sources of Noise and Uncertainty 
A brief summary of the signals involved helps identify the sources of uncertainty in the microresonator 

sensor. A ramp of current is used to drive the laser diode and subsequent signals are compared in time 

to the ramp. A calibration curve converts the current values to wavelengths. For this diode, the 

temperature is set by a thermoelectric cooler since temperature changes result in wavelength changes 

even without any change in current. The microresonator changes its shape in response to a force, which 

causes a shift in the resonant wavelength. These resonances are detected as losses in signal strength 

from the photodiode. By noting where the resonances occur in the current ramp, one can determine 

wavelengths and therefore the amount of the wavelength shift. 

Seeking the wavelength shift entails two types of uncertainty, one being temporal noise and the other 

being frequency noise (wavelength noise). The spectral linewidth of the laser represents frequency 

noise. Temporal noise arises from both the driver for the laser diode and from the photodiode. Since 

we are interested ultimately in wavelength, we will convert temporal noise into an equivalent frequency 

noise. The calibration curve relating current to wavelength for a typical laser diode is linear. Therefore, 

the two end points are used to approximate the slope, AX/Ai. For one laser diode this slope or ratio is 5 

picometers/milliamp. 

Figure 5.2 below illustrates the conversion of temporal noise into a current equivalent (or temporal 

equivalent) which can then be converted to wavelength uncertainty. The calibration between current 

and wavelength (for example, 5 picometers per milliamp) converts the current uncertainty into a 

wavelength uncertainty. 
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Figure 5.2 This illustrates the conversion of temporal amplitude noise into an equivalent 
wavelength uncertainty. Suppose a noise spike changes the amplitude instantaneously at 
time to during the ramp of current Since the ramp is used to determine wavelength, the 
extremities of the spike then yield an equivalent uncertainty in current If time during the 
ramp is used to determine wavelength, then the equivalent temporal uncertainty shown in 
the figure can be used. 
In general sampling uncertainty is well modeled as a noise. The noise level is the variance which is 

modeled as arising from a uniformly distributed probability density function. The width of the density 

function is the least significant bit converted to the quantity being measured. The Example Calculations 

section illustrates the process with a numerical example. 

5.4     Detector Noise Model 
Noise in detectors is a mature field of study, with many detailed models available. The application area 

is the major consideration in choosing a model for reasonable results. The model often used for 

photodiodes in fiber optic applications is chosen here. In essence, four physical phenomena are 

included in the model. Major noise sources are shot noise driven by the signal level itself and 

background power, dark current noise and thermal noise in the load resistance. The fourth 

phenomenon is that the signal level is often measured with the noise included. Therefore, a fraction of 

the signal power is added to the noise terms to account for that phenomenon. The end result is given as 

Eqn (5.16) below for the SNR. This is considered to be an analog signal, so sampling noise is not 

included, or equivalently, the signals are well sampled. Other assumptions are that the noise spectra 

are flat within the electronic bandwidth, so integrations over the band result in a multiplication by the 

bandwidth. This model also requires modification for avalanche photodiodes. 
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The notation is: is and iN are signal and noise currents, n is the quantum efficiency of photon-to-electron 

conversion, q is the electron charge in Coulombs, Ps is the signal power in watts (possibly plus the noise 

power), h is Planck's constant, v is the frequency of the light, PB is the background power that reaches 

the detector, Af is the electronic bandwidth of the detection circuit, k is Boltzmann's constant, T is the 

temperature in degrees Kelvin, RL is the load resistance, and a is the fraction of the signal power within 

the electronic frequency bandwidth that results from the noise. The first three terms in the 

denominator are the shot noise variance, the dark current variance and the thermal noise variance. The 

fourth term in the denominator is the correction factor for the signal actually being signal plus noise. 

Vendors commonly quote id, the dark current. At low signal power (perhaps less than 10 U.W), the 

thermal noise and the dark current noise dominate. Since thermal noise and dark current noise do not 

increase with power, the signal to noise ratio improves as signal power is increased. At some power 

level (perhaps ~ 10 u.W) the shot noise and/or the fourth term in the denominator become significant. If 

the shot noise is dominant, the SNR will increase with increasing signal power, but only linearly rather 

than as the square. If the fourth term dominates, the SNR does not increase any further with increasing 

signal power. 

Vendors often quote the responsivity in amps/watt instead of the quantum efficiency. The responsivity 

is given by the following. 

hv 
(5.17) 

Using Eqn (5.17) in Eqn (5.16) results in a more practical expression that follows. 
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5.5     Example Calculations 
As an example of sampling noise, suppose the current is being measured and the dynamic range is 

required to span 20 mA. A 16 bit A/D converter resolves the 20 mA dynamic range into 65536 bins. 

Therefore the least significant bit corresponds to 20/65536 mA or approximately 0.3 |iA. With the 

uniform probability density function, the variance is given by (0.3 u.A)2/12 or approximately 7.7 x 10'15A2, 

or a standard deviation of 0.88 uA. This standard deviation in wavelength terms is (5 pm/mA x 0.88 x 10" 

mA) or0.44 x 10" pm. Another sampling process, a temporal one, takes place as the current ramp 

progresses. The uncertainty associated with the temporal sample rate is discussed below. 



Specifications are not often detailed for laser diodes, so the following numbers are selected for 

illustrating the process of determining wavelength uncertainty. The operating power level is typically in 

the mW to tens of mW range, so we assume 8 mW of laser output power. At that level, the spectral or 

frequency noise is quoted as 10 MHz, so we will use 0.06 pm as the equivalent frequency noise. 

Amplitude noise arises from sources such as the laser diode itself, driver current noise and temperature 

noise The Agere 2300 laser specifications quote the relative intensity noise as - 145 dB/Hz. No separate 

specifications were available for driver noise, but it is small based on the overall noise amount. Also, the 

power output stability of the laser itself was not specified and that too is small. Temperature variations 

will manifest themselves as a change in wavelength, indistinguishable from a change in current. The 

laser diodes are usually cooled by a thermoelectric cooler. The temperature fluctuations may be slow 

enough to amount to drift more than noise. In any case the small overall intensity noise suggests the 

thermoelectric cooler holds the temperature steady without adding significant noise. Consequently, for 

illustration purposes the total intensity noise of the laser source will be - 145 dB/Hz. 

A typical responsivity is 0.8 mA/mW so the signal level will be 6.4 mA. 

The background power reaching the detector is assumed to be negligible (PB = 0) as will the signal 

fraction resulting from noise (a = 0). 

Thermal noise current squared with T = 300 deg K is 1.66 x 10'2° amps squared ohms per Hertz. So this 

number is multiplied by the ratio of the bandwidth in Hertz to the load shunt resistance in ohms. For 

illustration we choose a 1 MHz bandwidth and a 1 kilohm resistor. This yields 1.66 x 10"17 A2 for the 

thermal noise current squared. 

A typical detector dark current noise of 1 nA will be used for numerical illustration. The dark current 

noise squared is 3.2 x 10'19 times the dark current times the bandwidth. Using 1 nA for the vendor 

specified dark current and 1 MHz for the bandwidth results in 3.2 x 10'22 A2 for the dark current noise 

squared. 

The shot noise current squared is 3.2 x 10"19 times the responsivity times the signal power times the 

electronic bandwidth. Our assumed responsivity is 0.8 mA/mW and the laser output power is 8 mW. 

Again, with a 1 MHz bandwidth, the shot noise current squared is 2 x 10"15 A2. 

It is typical that shot noise dominates the noise for the detector and our assumed parameters illustrate 

that condition. The noise current squared numbers obtained as examples are added to get the total 

noise, which will be approximately equal to just the shot noise. The total detector noise current is 45 

nA. Converted to equivalent wavelength by using 5 picometer/milliampere, the detector noise is 

equivalent to 2.2 xlO"* picometers. 

Polarization noise results from the source varying the output polarization. The reflections (and perhaps 

some parameters) inside the micro resonator depend on polarization, so the variations in the 

polarizations yield different losses inside the resonator. Consequently the power measured by the 

photodiode may change if the polarization changes. 



Uncertainty in the wavelength separation of the two dips, one before stimulus and the other after 

stimulus, involves sampling and other previously discussed uncertainties. There are at least two effects 

that interact to affect the separation uncertainty. The laser linewidth is a fundamental uncertainty that 

limits accuracy. The Agere 2300 laser diode previously mentioned has a linewidth of 10 MHz. This 

translates to a wavelength uncertainty of approximately 0.06 picometers at XQ = 1.312 urn wavelength. 

In effect, this is the width of the tool used to measure the resonant dips, so its width is a limit on 

defining the shape of a resonance dip. The Q of the cavity describes the width of the resonance dip. See 

Appendix B for the resonant linewidth model. In terms of wavelength, the Q is equivalent to AX/XQ 

where AÄ. is the full width at half maximum and Xois the resonant wavelength.    See references 3 

through 5 for more detailed discussions. For Q. = 106 the resonant linewidth is 1.3 picometers. That 

means the maximum number of uncorrelated samples within the full width half maximum resonance 

width is 1.3/0.06 or approximately 22 samples. However, because of the scanning the temporal 

sampling rate must also be considered. It is the second of the two effects under discussion. 

The temporal sampling rate affects a number of performance issues in addition to the uncertainty. Each 

ramp can be thought of as a "sample" unto itself since we assume a detection of a resonance shift 

occurs only once during a given ramp. For example, suppose one wants to check for a shift 400 times 

per second. That means a scan or ramp must complete within 2.5 milliseconds. If the stimulus is 

changing with time, the 2.5 millisecond separation must be satisfactory for the intended application. 

The next issue affecting temporal sampling rates is the range of wavelengths to be search for the 

resonance shift. The wavelength range can be guided by the free spectral range of the resonator. For 

example, consider a 100 u.m diameter sphere. The wavelength that resonates in the sphere must have 

an integral number of wavelengths around the circumference. With PMMA index of refraction is 1.492 

and with PDMS the index is 1.4. Near 1.312 u.m wavelength, the free spectral range is slightly less than 4 

nm for either material ( 3.7 nm for PMMA or 3.9 nm for PDMS. Let us choose the laser linewidth of 0.06 

pm to be our sampling distance. To span 4 nm, we need 67,000 samples. With 400 scans per second, 

our temporal sampling rate must be approximately 27 M samples per second. 

The choice of the laser linewidth as the sample spacing is somewhat arbitrary. A larger sample spacing 

provides fewer data points so the resonance line shape is not as well resolved. From an uncertainty 

viewpoint the laser linewidth is already an uncertainty whereas the sample spacing must be converted 

to uncertainty as was done for the amplitude digitization. The two effects are independent so the net 

uncertainty is the square root of the sum of the squared individual uncertainties. If we choose the 

sample spacing of 0.06 pm, the sampling uncertainty is 0.017 pm. This yields a net uncertainty from 

these two effects of 0.062 pm. The laser linewidth dominates the sampling uncertainty. 

5.6     Information Rate 
The microresonator sensor has a one dimensional signal output which is the detector output as a 

function of wavelength, although other equivalent variables can be used. As shown above the driving 

current for the laser diode can be used instead of wavelength shift, or time during the ramp can also be 

used. Consequently, the information rate is modeled by the following equation. 
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H is the information rates in bits per measurement (with log implying base 2 logarithm), S is the signal 

power spectral density (including noise, in general) and N is the noise power spectral density, i, is the 

frequency so that B is the bandwidth (single sided). 5; and B have appropriate units, e.g. cycles per m 

with our choice of wavelength as the independent variable forthe signal. 

5.6.1    Information Rate for Detection of Dip 
There are various features that can be extracted from the data. One of these is simply detecting the 

dips and noting the time separation of the minima. The signal for this feature extraction is modeled as 

follows. The basic signal prior to signal processing is the detector output. The detector output (in amps) 

is linearly related to the optical power from the fiber. The laser input to the fiber is an increasing power 

over time resulting from the current ramp driving the laser diode. As the current changes along the 

ramp the output wavelength changes, with 5 picometers per milliamp being our example value. The 

power output dips in the vicinity of a resonance of the micro resonator. The width and shape of the dip 

are discussed in Appendix B. 

The first step in processing is to remove the unimportant ramp in the detector output. After that, the 

remaining feature is the sharp dip denoting the resonance. There can be more than one resonance 

within each scan of wavelengths. However for signal spectrum purposes, we assume a single dip before 

the stimulus is applied and a single dip after the stimulus is applied. We assume the dips are identical 

except for their locations in wavelength. The signal power is then the square of the detector output in 

amps to yield a power signal in A2, consistent with our prior noise power calculations. 

The same signal to noise ratio holds if the dips are considered pulses with peaks instead of dips. 

Therefore, we use the following as our signal. 
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MA is the peak of the current signal in amps, which is the fractional dip times the responsivity times the 

optical power. The constant A will adjust the amplitude to the proper value and the proper units. 

We need the transform of the signal squared. Recall that the transform of the signal magnitude squared 

is the cross correlation of the transform with its complex conjugate. The transform is given by the 

following. 
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The signal power spectrum is then as follows. 

m= (MAnAA 
exp(-2flzU|£|) (5.22) 

For a single sided power spectrum the symmetry of the above power spectrum yields the following 

single sided expression. 

S({) = 2 
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The noise power spectrum is the denominator in Eqn (5.18). Often the shot noise from the detection 

process dominates the noise. 

5.6.2 Information Rate for Detection of Dip: A Numerical Example 
We use Eqn (5.19) with some assumptions to provide a numerical example of the information rate when 

detection of a dip is the goal. Our prior example values are used except that we increase the temporal 

bandwidth consistent with a 27 million samples per second sampling rate. We assume the detector shot 

noise is the noise power spectrum. 

The signal power spectrum is given in Eqn (5.23) and the shot noise spectrum has that same spectral 

shape. Thus the ratio of the two spectra is constant. As the spectra approach zero, other noise terms 

come into play. We choose to limit the spectrum to a band where the two spectra are significant 

compared to zero. For integration purposes for Eqn(5.19) we are integrating a constant from zero out to 

a band limit. The following numerical results illustrate the process. 

The peak signal current arises from 8 mW of optical power, converted to current by a responsivity of 0.8 

mA/mW, and a fractional peak of 0.6, or 3.84 milliamps. This yields a peak squared signal current of 4.1 

x 10'5 amps2. The resulting shot noise current squared is 2(1.6 x 10'19)(3.84 x 10"3) Af. We have chosen 

the electronic bandwidth to be 50 MHz. Note that the electronic bandwidth is not the bandwidth for 

the integration in Eqn (5.19). With this electronic bandwidth the shot noise current squared is equal to 

6.14 x 10"14amps2. 

In Eqn (5.19) the signal spectrum is assumed to include additive noise. The integrand is then log2(l+S/N) 

where S is signal only, and for our example is equal to 29.3. This large number results from the small 



noise with a modest optical power. In essence, the information rate is driven by the number of 

equivalent noise levels found in the signal, hence the large value. 

The bandwidth for the integral is the final issue to be considered. We have used wavelength as the 

independent variable for our signal, so our frequency variable £, has units of m'1 or some equivalent 

convenient unit. The decaying exponential in Eqn (5.23) will be considered zero when the following 

bandwidth is reached. 

A£ = 
2nAA 

(5.24) 

AX is found from the Q of the resonator (assume Q= 10 ) and the laser wavelength of 1.3 p.m. The result 

is A£ = 0.36 cycles per picometer. 

The information rate is then 10.7 bits per picometer per measurement. 

Intuitively this information rate suggests one can resolve roughly 1000 positions within a picometer. 

This is true if one considers the shot noise as the limiting factor. A more realistic approach is to use the 

total uncertainty expressed in picometers. As an example the uncertainty caused by the laser linewidth 

is a larger uncertainty (= 0.06 pm) than the noise (=0.0012 pm, a factor of 50 smaller). With the laser 

linewidth uncertainty we would expect to resolve approximately 16 spots within 1 pm. This is 

approximately 4 bits per picometer per measurement. This estimate does not account for the different 

spectral shape of the laser linewidth uncertainty, but the estimate provides further intuitive meaning for 

what the information rate means physically. 

5.6.3    Using Cross Correlation to Determine Separation of Dips 
The actual signal processing consists of measuring the shift in the resonant frequency rather than just 

detecting the presence of a dip. One technique for determining the shift is to locate the peak value in 

the cross correlation of the before stimulus signal and the after stimulus signal. To proceed with a 

numerical example, the details of the cross correlation of two Lorentzian functions is presented in 

Appendix C. The before stimulus signal and the after stimulus signal are assumed to be the same except 

for the shift in the resonant wavelength. While the actual signal is a dip, we first focus on just the part 

that varies with wavelengths. Then the constants will be considered. From the appendices the two 

signals are given by the following. 
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Their cross correlation is then expressed as follows. 

C(S) = K- '-- -2  (5.26) 

6 is the shift or lag independent variable for the cross correlation, C. AA is the full width half maximum 

of the lineshape. Usually this is estimated from the Q of the resonator and the operating wavelength 

given the following. 

Q=-ZT {527) 

M is the fractional depth of the dip that is normalized to be between 0 and 1. So our normalized signals 

are just a constant -g(A) and the same constant -gi(A). The cross correlations of these two signals then 

adds the square of the constant minus the mean values of g and gi to C(6). Under our assumptions of 

identical lineshapes, the mean values of g and gx are the same, and are equal to MATI(AV2). The 

constant A will be adjusted to make the peak of the cross correlation equal to the peak signal current 

squared. 

In locating the dip what matters is the change in the signal as we move one or more samples away from 

the dip. Therefore we get that information by working from Eqn (5.26) as a peaked function. The 

constant additive terms discussed above do not affect the result. If our change in signal is smaller than 

the noise, the noise can cause an uncertainty in location. 

The sample spacing relative to the width AX is critical in determining the accuracy of peak location. 

Using our example numbers the linewidth of the laser limits our resolution to something greater than 

0.06 pm whereas the FWHM of the resonator line shape function is approximately 1.3 pm. With an 

adequate temporal sample rate (27 M samples per second) the lineshape function is reasonably well 

sampled. There will be approximately 22 samples within the FWHM portion of the line shape. We will 

treat this well sampled condition and not consider a poorly sampled case. 

There is always a phasing or synchronization issue as to whether the peak is centered within a sample. 

We will make that assumption for our calculations. Therefore, the sample at the peak itself extends 

0.03 pm to either side of the peak. The adjacent sample is centered 0.06 pm from the peak itself. As 

one moves from the peak sample, the adjacent samples change by factors of 0.0021, 0.0083, 0.0185, 

0.0497, etc. That means that the noise or uncertainty has to exceed 0.21 percent of the peak value to 

cause a one sample uncertainty in peak location. Continuing with our example numbers the peak 

current from the detector is 8 mW of optical power times a responsivity of 0.8 mA/mW or 6.4 mA. The 

resonance will dip below this by the fraction factor M for which we have used 0.6 as an example. That 

means at the depth of the dip the current is 0.4 times 6.4 or 2.56 mA. The uncertainty must cause a rise 

of 0.0021 time 2.56 mA or 0.0269 pm (using 5 pm/mA for wavelength vs. current slope for laser). 



The shot noise associated with a signal of 2.56 mA is 4.1 x 10'1" A2. This is equivalent to a current of 2.02 

x 10'4 mA, which is 0.001 pm. The shot noise is approximately 4 % of the signal level change in moving 

from the minimum to an adjacent sample. 

A process has been presented and illustrated regarding uncertainty in locating a dip using cross 

correlation. As expected with the large signal level and the very small shot noise, the shot noise does 

not impact the sample selection for the minimum. The shot noise is only about 4% of what would cause 

a single sample uncertainty in the minimum location. 
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Equation Section lAppendix A Numerical Integration 
Eqn (5.10) can be expressed in different algebraic forms, so a different form was chosen. Basically it is 

obtained by letting cos9 be x and replacing cos2 0O by (a2-a0
2)/a2. The end result is the following 

expression for the Hn coefficients. 

3(4n + l)FJa2-a2
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Only even values of n will be used, so one can use 2n as the subscript of H and for the order of P, the 

Legendre polynomial. In that case, for loops one uses an increment that advances by 1. Here, we use an 

index that begins with 0 and increments by 2. Using Matlab, one cannot use a subscript of 0 for an 

array, so we used nn = n+1 where n advances by an increment of 2. 

The convergence of the integral towards zero is slow, so that the power of x in the Legendre polynomials 

gets high. This can create numerical noise without a robust algorithm for generating the Legendre 



polynomials. Consequently, the built in function legendre.m was used and was successful, legndre.m 

generates the associated Legendre polynomials recognized as P„m(x). Pn(x) is the m=0 associated 

Legendre polynomial, which is the Matlab subscript 1 array from the m=0 to m=n-l associated arrays 

generated. The code snippet below illustrates the approach, where x is an array of values from cos60 to 

1, Note that odd orders are also generated even though they are not used. The 1001 vectors contain 

the Pn(x) values needed for the integration. 

%%%%%%%%%%%%%%%%%%%%%%%% Legendre Polynomials 

%Generate the Legendre Polynomials. Use legendre which generates the 

%associated Legendre Polynomials, Psub n superscript m (x). The m=0 

%(Matlab subscript of l)array is the ordinary Legendre Polynomials 

for n=0:l:1000   %Generate more than twice the n loop limit below since 

%this function uses a backward recursion algorithm. That is, both 

%even and odd orders are generated. The code below outside this loop 

%selects the even orders. Start with n=0 to get P sub 0 array. Note that 

%P starts with an index of 1, which is P sub 0 array. 

Ptemp=legendre(n,x); %Generates the associated Leg Poly's 

P(n+l,:)=Ptemp(l,:);    %selects the m = 0 array to keep 

clear Ptemp 

end       %end n loop 

The integral from Eqn (A.l) was accomplished using a Simpson's rule approach, modified slightly to 

eliminate a trivial imaginary part to the first value in the integration. The code below creates 401 even 

order values for the integral. This will subsequently be multiplied by the term outside the integral in Eqn 

(A.l). This code uses an x array described earlier, the sphere radius a and a calculated radius of the rigid 

plate contact area. 

%%%%%%%%%%%% Integral Calculation %%%%%%%%%%%%%%%% 

fornn=l:401 

intgrnd(nn,:)=sqrt((x(l,:).A2)*aA2-(aA2-a0A2)).*P(2*nn,:); 

%The true Simpson's rule is commented out because the term 

%int(nn,l) causes a complex result. Removing it doesn't change the 

%values and the imaginary part was very small. I chose to use the 

%magnitude or abs(int(nn,l), but it doesn't really matter. 

integral(nn)= dx/3*(abs(intgrnd(nn,l))+ 2*sum(intgrnd(nn,3:2:end-2))... 

+ 4 *sum(intgrnd(nn,2:2:end))+ intgrnd(nn,end)); 

%integral(nn)= dx/3*(intgrnd(nn,l)+2*sum(intgrnd(nn,3:2:end-2))... 

%+4*sum(intgrnd(nn,2:2:end))+intgrnd(nn,end)); 

end   %end nn loop 



Equation Section lAppendix B Model for Resonance Dip 

A number of authors state that the resonance dip is well approximated by a Lorentzian lineshape. There 

are a variety of different expressions used for this line shape that depend on normalization mostly. We 

choose to work in wavelengths (rather than frequency), so our expression follows in Eqn (B.l). 
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A is a constant that will be adjusted to make the peak power correct and to have correct units. In this 

form M represents the fractional peak value or the depth of the dip if we subtract g(A) from 1 or the 

constant signal. That is, evaluating at Ao yields M times A. M has a value between 0 and 1. A\ is the full 

AA 
width at half maximum as can be seen by evaluating g(\) at A = A0 + . The total area under the 

function in this form is n times AA/2 times M times A. 

The parameters are measured from data as follows. The resonant wavelength X0 is found by locating the 

minimum value of the transmitted power. The ramp resulting from the current ramp can be removed 

from the signal prior to processing. AA is measured as the full width at half max on the dip. M is the 

depth of the dip. 

There are other quantities that relate to these parameters. For example, the Q of the system is equal to 

AX/AQ. Naweed et al. [5] give the following expression for M. 

M = - 

T_ 
a\ (B.2) 

T represents the coupling transmission from the fiber to the sphere and at> is the loss in the sphere A 
Unfortunately, it is not easy to separate these two loss quantities from usual data. Consequently Eqn 

(B.2) is offered for theoretical interest. Notice however that the depth increases (1 - M gets smaller) 

with increasing Fand decreases with increases in au 

Equation Chapter 3 Section lAppendix C Crosscorrelation of Lorentzian 
Lineshape Functions 
The Fourier transform of e~      is given by the following expression. 



  

F{e-2^} = £ e-^e-^'dx = £ e^e'^'dx + [ e^'e^dx (C. 1) 

By expanding the exponential with an imaginary argument into cosines and sines, then changing the 

dummy variable of integration on the first integral to a = - x, one obtains the following, after consulting 

a table of integrals. 
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ß is a constant and the independent variable isE.. This Lorentzian function and its transform can be used 

to obtain the cross correlation of the lineshape functions of interest. 

We use the same functional shape before stimulus and after stimulus except for a shift of the 

resonance. Eqn (B.l) describes the resonance lineshapes that we will use. Without loss of generality we 

set Ao to 0 as the before stimulus response. The after stimulus response will shift the resonance to Ai so 

our second lineshape is also obtained from Eqn (B.l) with Ao replaced by AL. The term inside the 

brackets below matches the form of Eqn (C.2). 
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In the transform domain, the product of the two functions is the following. 
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The bracketed terms show the individual functions in the transform domain. Combining the two 

identical decaying exponential terms and bringing the result out of the transform domain yields the 

cross correlation, C(6j.. 
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Generalizing to a AQ not zero, replace Aj by Aj - AQ. Some liberty was taken with signs since the cross 

correlation of these even functions is an even function. Somewhat as expected the cross correlation is a 

Lorentzian function with twice the FWHM value of the individual lineshapes. We finally write the 

following for our basic signal arising from the cross correlation. While the signals actually dip, the noise 

and uncertainty and SNR will be the same if we use these peaked functions. 

„/crt    M
2A27t(AA)3 1 

C(S) = —7  (C.6) 
4 [*-(4-4,)]2

+(AA)2 

The constant A will be adjusted so that the peak value is the signal current squared in amps squared. 

For example, with 8 m W of optical power, detector responsivity of 0.8 mA/mW, A will be 6.4 mA times 2 

divided by the square root of pi times AA with units of mA per m to the one half power. 



Profile Sensing Using Sensor Atoms 
Eddie L. Jacobs 

Abstract—The concept of a sensor atom as a fundamen- Sensor atoms are sensors. Hence, the properties of 

tal unit of sensing is introduced. The properties of one sensors ^ the properties of sensor atoms. In general 

particular type of sensor atom, the Bernoulli sensor atom, .,,           ,.         . 
sensors sense some sensible quantity and output some 

are derived. 
other sensible quantity. For instance, a typical electro- 

optic detector senses light and outputs a current or 
I. INTRODUCTION U      C     ,, .    . ..   . .   . voltage. Sensible quantities can be described in terms 

Profiling sensors have been demonstrated to provide of domain modes. Domain modes are functions that 

sufficient information about a moving object to perform describe the behavior of the sensor with respect to some 

many useful classifications such as whether or not the domain. As an example, an electo-optical sensor may 

object is a human, an animal, or a vehicle. A profiling only sense energy from a certain angular region of space 

sensor extracts basic shape information about a moving and over a limited spectral bandwidth. As a result, an 

object and classifies it into two or more categories, electro-optical sensor will have a spatial domain mode 

These types of sensors could be a low cost alternative (or simply spatial mode) and a spectral mode. The sensor 

to imaging sensors for applications involving border and may be more sensitive to one polarization of light than 

perimeter security. To date, they sensors have been built another and will have a polarization mode. It will also 

using linear arrays of sensors. The linear arrays have be limited in how fast it can respond to changes in light 

either been a single integrated component or collections energy1 and will have a temporal mode. These modes 

of several discrete components. may be independent or may be coupled. For instance. 

Atoms are the fundamental unit of matter. Atoms in if a sensor has no sensitivity to polarization, the spatial 

combination form all the stuff we see. A large part and polarization modes will be independent. On the other 

of modem physics has been devoted to studying the hand, as is often the case, polarization sensitivity may 

properties of atoms  and how  they interact to form vary spatially and as a result the polarization and spatial 

molecules. The concept of a sensor atom presented in modes will be coupled. 

this research is an attempt to leverage some of the prin- Within an element atoms are described fairly simply 

ciples of modem atomic physics and apply them to the and all are the same. However, the properties of a 

problem of sensor design with particular application to material are more strongly determined by the configu- 

the profiling sensor. The main result of this research will ration of the atoms rather than the atoms themselves. 

be a software/hardware infrastructure that facilitates the 

development of complex sensing systems from simple ,_   ,         ,      .   .      , . , . ,   ,.         . ,.      ,, ,        , r                         r                   o    J                               r i The temporal mode is restricted to time variations that are slow 

elements. with respect to the mean frequency of the light. 



A. General Theory 

Carbon atoms arranged in one way form the lead in a into the power of interconnected sensor atoms. Sensors 

pencil. Arranged another way they form a diamond. Sim- of minimal complexity joined together by appropriate 

ilarly, sensor atoms when combined together will have interconnection rules allow sensors to be developed that 

properties that are not only governed by the individual are robust, optimal for their intended tasks, and make 

properties of the atoms but also by the rules by which efficient use of power and bandwidth resources. This 

they interact. Rules established for the interaction of research explores some aspects of this capability us- 

sensor atoms presume the existence of some mechanism ing theoretically simple and physically realizable sensor 

for facilitating the interaction such as a communication atoms. The remainder of the paper is organized as 

channel and protocol. This mechanism is also properly follows. The next section describes a particular type of 

a property of the sensor atom. sensor atom termed the Bernoulli sensor atom. 

As a simple example of the interaction of sensor 

atoms, suppose two simple break-beam sensors (atoms) U. A BERNOULLI SENSOR ATOM 

are positioned horizontally some distance apart. These 

sensors send out an optical beam that strikes a reflecting 

surface and returns to the receiver which is co-located Consider a sünPle sensor whose ^donal block 

with the beam transmitter. The output of each sensor is dia«ram is M shown in Fi8ure ' InPut t0 the sensor 

one of two states; "OPEN" if the beam is not broken and Produces a sensed siSnal S W which is conuPted b? 

"CLOSED" if it is. As an object passes by it will break additive noise N W t0 Produce the si8nal V W which 

one beam and then the other. If the distance between is samPled every T seconds t0 Produce the random 

the sensors is sufficiently short, objects of interest will secluence V- where n is the index of *e nth samPle- 

at some time be breaking both beams during transit. Each value of V» is ««np««d with a threshold value 7 

Assume each sensor atom can report its own state (open t0 Produce the foUowinS binaiy se(5uence- 

or closed) and has knowledge of the state of other sensor 

at all times. Each atom now has enough information to 

report something more than just whether it is open or 

closed. A proper choice of interconnection rules of the ^ sec*uence 5« 1S a BemouUi se9uence character- 

atoms will allow each atom to report the direction of ized t0 fest order ** the Probabüity P where 

travel of the object. An example of an interconnection 

rule would be that if a sensor (say the left one) changes -,„       ,,      n „,        ,      nnr/ m\       i   ,->\ 
p = P[Bn = l] = P[Vn>'v] = P[V(nT)>'y}   (2) 

state from open to closed and knows that the right sensor 

is in a closed state then the object is traveling from right If V (t) is a stationary random signal, then 

to left and the atom will report that the direction of travel f+°° 
P= fv(v)dv (3) 

is "LEFT". This is something more than either sensor J-r 

can discern alone and is possible due to the interaction where fv (y) is the first order probability density 

of both sensors. function (PDF) of the random variable V (t). Note that 

This example, while trivial, provides some insight because of its binary nature, E [Bn] = p. 

0) 
0    K.<7 



The second order statistics of Bn are described by    If py = 0 and 7 = 0 then Zn is the output of a classic 

RB (k) - E[BnBn+k]  = P[Bn = 1, Bn+k = 1]. If    hard limiter and Rz (k) = \ ziosmpk yeilding 

Vx = V (nT) and V2 = V (nT + kT) then 

r+00   c+00 /•+00   r+<x 

Rß(k)- /        fvlV1fa,v2)dv1dv2 
J -y J -v 

RB (fc) = r- arcsin ^ + - 
/7T 4 

(9) 

(4) . For more general conditions equation 8 must be used. 

where /^VJ fa,v2) represents the joint PDF of the sig- 

nal V (t) at times nT and nT+kT. Further development 

requires knowledge of the fust and second order densities 

ofV(t). 

B. The Gaussian Assumption 

If V (t) is assumed to be a non-periodic Gaussian 

process with autocorrelation Ry (r) then 

fv{v) = G(v:ftv,av)=[2™v]-KxpL\(^^y\ 
(5) 

and 

/v,Vj fa,^) = 2ir<T$yJl - pi      exp |- [2a2, (l - ^)]   1 [fa - pv)2 - 2pk fa - pv) fa - pv) + fa - pv)2] ] 

(6) 

where pv =   lim Ry (T), av + pv = Ry (0), and 
T-+00 

pk =   1^ (o)_ ^y' *' *s convement t0 re-write equation 

6 using the definition of conditional probability as 

/v,Vj («1,«2) = /V, (V2)/V!/Vj («l) = /v («2)/v,/V, 0>l) 

(7) 

where   /Vl/v, fa)    =    <?(^i : /iC («i) ,^c)   with 

A*c («1) = P-v + pk fa - pv) and ac = ay^Jl - p\. 

Using this definition then equations 3 and 4 can be 

written in terms of the cumulative normal function or 

P=i-*(^)and 

RB {k) = P- j °° fv (v)$ (7   ^(V)) dv   (8) 

with <J> (x) = -4- /^ e-' /7de. A useful particular 

result can be obtained by defining the auxiliary random 

variable Zn = 2Bn-l. Then RB (k) = \RZ (k)+p-\. 




